×
Well done. You've clicked the tower. This would actually achieve something if you had logged in first. Use the key for that. The name takes you home. This is where all the applicables sit. And you can't apply any changes to my site unless you are logged in.

Our policy is best summarized as "we don't care about _you_, we care about _them_", no emails, so no forgetting your password. You have no rights. It's like you don't even exist. If you publish material, I reserve the right to remove it, or use it myself.

Don't impersonate. Don't name someone involuntarily. You can lose everything if you cross the line, and no, I won't cancel your automatic payments first, so you'll have to do it the hard way. See how serious this sounds? That's how serious you're meant to take these.

×
Register


Required. 150 characters or fewer. Letters, digits and @/./+/-/_ only.
  • Your password can’t be too similar to your other personal information.
  • Your password must contain at least 8 characters.
  • Your password can’t be a commonly used password.
  • Your password can’t be entirely numeric.

Enter the same password as before, for verification.
Login

Grow A Dic
Define A Word
Make Space
Set Task
Mark Post
Apply Votestyle
Create Votes
(From: saved spaces)
Exclude Votes
Apply Dic
Exclude Dic

Click here to flash read.

arXiv:2306.17777v3 Announce Type: replace
Abstract: In this paper, we show that computing canonical labelings of graphs of bounded rank-width is in $\textsf{TC}^{2}$. Our approach builds on the framework of K\"obler & Verbitsky (CSR 2008), who established the analogous result for graphs of bounded treewidth. Here, we use the framework of Grohe & Neuen (ACM Trans. Comput. Log., 2023) to enumerate separators via split-pairs and flip functions. In order to control the depth of our circuit, we leverage the fact that any graph of rank-width $k$ admits a rank decomposition of width $\leq 2k$ and height $O(\log n)$ (Courcelle & Kant\'e, WG 2007). This allows us to utilize an idea from Wagner (CSR 2011) of tracking the depth of the recursion in our computation.
Furthermore, after splitting the graph into connected components, it is necessary to decide isomorphism of said components in $\textsf{TC}^{1}$. To this end, we extend the work of Grohe & Neuen (ibid.) to show that the $(6k+3)$-dimensional Weisfeiler--Leman (WL) algorithm can identify graphs of rank-width $k$ using only $O(\log n)$ rounds. As a consequence, we obtain that graphs of bounded rank-width are identified by $\textsf{FO} + \textsf{C}$ formulas with $6k+4$ variables and quantifier depth $O(\log n)$.
Prior to this paper, isomorphism testing for graphs of bounded rank-width was not known to be in $\textsf{NC}$.

Click here to read this post out
ID: 822602; Unique Viewers: 0
Unique Voters: 0
Total Votes: 0
Votes:
Latest Change: April 26, 2024, 7:31 a.m. Changes:
Dictionaries:
Words:
Spaces:
Views: 14
CC:
No creative common's license
Comments: