×
Well done. You've clicked the tower. This would actually achieve something if you had logged in first. Use the key for that. The name takes you home. This is where all the applicables sit. And you can't apply any changes to my site unless you are logged in.

Our policy is best summarized as "we don't care about _you_, we care about _them_", no emails, so no forgetting your password. You have no rights. It's like you don't even exist. If you publish material, I reserve the right to remove it, or use it myself.

Don't impersonate. Don't name someone involuntarily. You can lose everything if you cross the line, and no, I won't cancel your automatic payments first, so you'll have to do it the hard way. See how serious this sounds? That's how serious you're meant to take these.

×
Register


Required. 150 characters or fewer. Letters, digits and @/./+/-/_ only.
  • Your password can’t be too similar to your other personal information.
  • Your password must contain at least 8 characters.
  • Your password can’t be a commonly used password.
  • Your password can’t be entirely numeric.

Enter the same password as before, for verification.
Login

Grow A Dic
Define A Word
Make Space
Set Task
Mark Post
Apply Votestyle
Create Votes
(From: saved spaces)
Exclude Votes
Apply Dic
Exclude Dic

Click here to flash read.

arXiv:2307.02180v3 Announce Type: replace
Abstract: We introduce a just-in-time runtime program transformation strategy based on repeated recursion unfolding. Our online program optimization generates several versions of a recursion differentiated by the minimal number of recursive steps covered. The base case of the recursion is ignored in our technique.
Our method is introduced here on the basis of single linear direct recursive rules. When a recursive call is encountered at runtime, first an unfolder creates specializations of the associated recursive rule on-the-fly and then an interpreter applies these rules to the call. Our approach reduces the number of recursive rule applications to its logarithm at the expense of introducing a logarithmic number of generic unfolded rules.
We prove correctness of our online optimization technique and determine its time complexity. For recursions which have enough simplifyable unfoldings, a super-linear is possible, i.e. speedup by more than a constant factor.The necessary simplification is problem-specific and has to be provided at compile-time. In our speedup analysis, we prove a sufficient condition as well as a sufficient and necessary condition for super-linear speedup relating the complexity of the recursive steps of the original rule and the unfolded rules.
We have implemented an unfolder and meta-interpreter for runtime repeated recursion unfolding with just five rules in Constraint Handling Rules (CHR) embedded in Prolog. We illustrate the feasibility of our approach with simplifications, time complexity results and benchmarks for some basic tractable algorithms. The simplifications require some insight and were derived manually. The runtime improvement quickly reaches several orders of magnitude, consistent with the super-linear speedup predicted by our theorems.

Click here to read this post out
ID: 822603; Unique Viewers: 0
Unique Voters: 0
Total Votes: 0
Votes:
Latest Change: April 26, 2024, 7:31 a.m. Changes:
Dictionaries:
Words:
Spaces:
Views: 12
CC:
No creative common's license
Comments: