×
Well done. You've clicked the tower. This would actually achieve something if you had logged in first. Use the key for that. The name takes you home. This is where all the applicables sit. And you can't apply any changes to my site unless you are logged in.

Our policy is best summarized as "we don't care about _you_, we care about _them_", no emails, so no forgetting your password. You have no rights. It's like you don't even exist. If you publish material, I reserve the right to remove it, or use it myself.

Don't impersonate. Don't name someone involuntarily. You can lose everything if you cross the line, and no, I won't cancel your automatic payments first, so you'll have to do it the hard way. See how serious this sounds? That's how serious you're meant to take these.

×
Register


Required. 150 characters or fewer. Letters, digits and @/./+/-/_ only.
  • Your password can’t be too similar to your other personal information.
  • Your password must contain at least 8 characters.
  • Your password can’t be a commonly used password.
  • Your password can’t be entirely numeric.

Enter the same password as before, for verification.
Login

Grow A Dic
Define A Word
Make Space
Set Task
Mark Post
Apply Votestyle
Create Votes
(From: saved spaces)
Exclude Votes
Apply Dic
Exclude Dic

Click here to flash read.

arXiv:2308.10025v2 Announce Type: replace
Abstract: Recent studies indicate that dense retrieval models struggle to perform well on a wide variety of retrieval tasks that lack dedicated training data, as different retrieval tasks often entail distinct search intents. To address this challenge, in this work we leverage instructions to flexibly describe retrieval intents and introduce I3, a unified retrieval system that performs Intent-Introspective retrieval across various tasks, conditioned on Instructions without any task-specific training. I3 innovatively incorporates a pluggable introspector in a parameter-isolated manner to comprehend specific retrieval intents by jointly reasoning over the input query and instruction, and seamlessly integrates the introspected intent into the original retrieval model for intent-aware retrieval. Furthermore, we propose progressively-pruned intent learning. It utilizes extensive LLM-generated data to train I3 phase-by-phase, embodying two key designs: progressive structure pruning and drawback extrapolation-based data refinement. Extensive experiments show that in the BEIR benchmark, I3 significantly outperforms baseline methods designed with task-specific retrievers, achieving state-of-the-art zero-shot performance without any task-specific tuning.

Click here to read this post out
ID: 822609; Unique Viewers: 0
Unique Voters: 0
Total Votes: 0
Votes:
Latest Change: April 26, 2024, 7:31 a.m. Changes:
Dictionaries:
Words:
Spaces:
Views: 7
CC:
No creative common's license
Comments: