×
Well done. You've clicked the tower. This would actually achieve something if you had logged in first. Use the key for that. The name takes you home. This is where all the applicables sit. And you can't apply any changes to my site unless you are logged in.

Our policy is best summarized as "we don't care about _you_, we care about _them_", no emails, so no forgetting your password. You have no rights. It's like you don't even exist. If you publish material, I reserve the right to remove it, or use it myself.

Don't impersonate. Don't name someone involuntarily. You can lose everything if you cross the line, and no, I won't cancel your automatic payments first, so you'll have to do it the hard way. See how serious this sounds? That's how serious you're meant to take these.

×
Register


Required. 150 characters or fewer. Letters, digits and @/./+/-/_ only.
  • Your password can’t be too similar to your other personal information.
  • Your password must contain at least 8 characters.
  • Your password can’t be a commonly used password.
  • Your password can’t be entirely numeric.

Enter the same password as before, for verification.
Login

Grow A Dic
Define A Word
Make Space
Set Task
Mark Post
Apply Votestyle
Create Votes
(From: saved spaces)
Exclude Votes
Apply Dic
Exclude Dic

Click here to flash read.

arXiv:2403.13162v2 Announce Type: replace
Abstract: We consider the problem of maintaining a collection of strings while efficiently supporting splits and concatenations on them, as well as comparing two substrings, and computing the longest common prefix between two suffixes. This problem can be solved in optimal time $\mathcal{O}(\log N)$ whp for the updates and $\mathcal{O}(1)$ worst-case time for the queries, where $N$ is the total collection size [Gawrychowski et al., SODA 2018]. We present here a much simpler solution based on a forest of enhanced splay trees (FeST), where both the updates and the substring comparison take $\mathcal{O}(\log n)$ amortized time, $n$ being the lengths of the strings involved. The longest common prefix of length $\ell$ is computed in $\mathcal{O}(\log n + \log^2\ell)$ amortized time. Our query results are correct whp. Our simpler solution enables other more general updates in $\mathcal{O}(\log n)$ amortized time, such as reversing a substring and/or mapping its symbols. We can also regard substrings as circular or as their omega extension.

Click here to read this post out
ID: 822675; Unique Viewers: 0
Unique Voters: 0
Total Votes: 0
Votes:
Latest Change: April 26, 2024, 7:31 a.m. Changes:
Dictionaries:
Words:
Spaces:
Views: 12
CC:
No creative common's license
Comments: