×
Well done. You've clicked the tower. This would actually achieve something if you had logged in first. Use the key for that. The name takes you home. This is where all the applicables sit. And you can't apply any changes to my site unless you are logged in.

Our policy is best summarized as "we don't care about _you_, we care about _them_", no emails, so no forgetting your password. You have no rights. It's like you don't even exist. If you publish material, I reserve the right to remove it, or use it myself.

Don't impersonate. Don't name someone involuntarily. You can lose everything if you cross the line, and no, I won't cancel your automatic payments first, so you'll have to do it the hard way. See how serious this sounds? That's how serious you're meant to take these.

×
Register


Required. 150 characters or fewer. Letters, digits and @/./+/-/_ only.
  • Your password can’t be too similar to your other personal information.
  • Your password must contain at least 8 characters.
  • Your password can’t be a commonly used password.
  • Your password can’t be entirely numeric.

Enter the same password as before, for verification.
Login

Grow A Dic
Define A Word
Make Space
Set Task
Mark Post
Apply Votestyle
Create Votes
(From: saved spaces)
Exclude Votes
Apply Dic
Exclude Dic

Click here to flash read.

arXiv:2404.03537v3 Announce Type: replace
Abstract: Recent advances in deep face recognition have spurred a growing demand for large, diverse, and manually annotated face datasets. Acquiring authentic, high-quality data for face recognition has proven to be a challenge, primarily due to privacy concerns. Large face datasets are primarily sourced from web-based images, lacking explicit user consent. In this paper, we examine whether and how synthetic face data can be used to train effective face recognition models with reduced reliance on authentic images, thereby mitigating data collection concerns. First, we explored the performance gap among recent state-of-the-art face recognition models, trained with synthetic data only and authentic (scarce) data only. Then, we deepened our analysis by training a state-of-the-art backbone with various combinations of synthetic and authentic data, gaining insights into optimizing the limited use of the latter for verification accuracy. Finally, we assessed the effectiveness of data augmentation approaches on synthetic and authentic data, with the same goal in mind. Our results highlighted the effectiveness of FR trained on combined datasets, particularly when combined with appropriate augmentation techniques.

Click here to read this post out
ID: 822684; Unique Viewers: 0
Unique Voters: 0
Total Votes: 0
Votes:
Latest Change: April 26, 2024, 7:31 a.m. Changes:
Dictionaries:
Words:
Spaces:
Views: 13
CC:
No creative common's license
Comments: