×
Well done. You've clicked the tower. This would actually achieve something if you had logged in first. Use the key for that. The name takes you home. This is where all the applicables sit. And you can't apply any changes to my site unless you are logged in.

Our policy is best summarized as "we don't care about _you_, we care about _them_", no emails, so no forgetting your password. You have no rights. It's like you don't even exist. If you publish material, I reserve the right to remove it, or use it myself.

Don't impersonate. Don't name someone involuntarily. You can lose everything if you cross the line, and no, I won't cancel your automatic payments first, so you'll have to do it the hard way. See how serious this sounds? That's how serious you're meant to take these.

×
Register


Required. 150 characters or fewer. Letters, digits and @/./+/-/_ only.
  • Your password can’t be too similar to your other personal information.
  • Your password must contain at least 8 characters.
  • Your password can’t be a commonly used password.
  • Your password can’t be entirely numeric.

Enter the same password as before, for verification.
Login

Grow A Dic
Define A Word
Make Space
Set Task
Mark Post
Apply Votestyle
Create Votes
(From: saved spaces)
Exclude Votes
Apply Dic
Exclude Dic

Click here to flash read.

arXiv:2404.13503v2 Announce Type: replace
Abstract: A sequence of predictions is calibrated if and only if it induces no swap regret to all down-stream decision tasks. We study the Maximum Swap Regret (MSR) of predictions for binary events: the swap regret maximized over all downstream tasks with bounded payoffs. Previously, the best online prediction algorithm for minimizing MSR is obtained by minimizing the K1 calibration error, which upper bounds MSR up to a constant factor. However, recent work (Qiao and Valiant, 2021) gives an ${\Omega}(T^{0.528})$ lower bound for the worst-case expected $K_1$ calibration error incurred by any randomized algorithm in T rounds, presenting a barrier to achieving better rates for MSR. Several relaxations of MSR have been considered to overcome this barrier, via external regret (Kleinberg et al., 2023) and regret bounds depending polynomially on the number of actions in downstream tasks (Noarov et al., 2023; Roth and Shi, 2024). We show that the barrier can be surpassed without any relaxations: we give an efficient randomized prediction algorithm that guarantees $O(\sqrt{T}logT)$ expected MSR. We also discuss the economic utility of calibration by viewing MSR as a decision-theoretic calibration error metric and study its relationship to existing metrics.

Click here to read this post out
ID: 822708; Unique Viewers: 0
Unique Voters: 0
Total Votes: 0
Votes:
Latest Change: April 26, 2024, 7:31 a.m. Changes:
Dictionaries:
Words:
Spaces:
Views: 10
CC:
No creative common's license
Comments: