×
Well done. You've clicked the tower. This would actually achieve something if you had logged in first. Use the key for that. The name takes you home. This is where all the applicables sit. And you can't apply any changes to my site unless you are logged in.

Our policy is best summarized as "we don't care about _you_, we care about _them_", no emails, so no forgetting your password. You have no rights. It's like you don't even exist. If you publish material, I reserve the right to remove it, or use it myself.

Don't impersonate. Don't name someone involuntarily. You can lose everything if you cross the line, and no, I won't cancel your automatic payments first, so you'll have to do it the hard way. See how serious this sounds? That's how serious you're meant to take these.

×
Register


Required. 150 characters or fewer. Letters, digits and @/./+/-/_ only.
  • Your password can’t be too similar to your other personal information.
  • Your password must contain at least 8 characters.
  • Your password can’t be a commonly used password.
  • Your password can’t be entirely numeric.

Enter the same password as before, for verification.
Login

Grow A Dic
Define A Word
Make Space
Set Task
Mark Post
Apply Votestyle
Create Votes
(From: saved spaces)
Exclude Votes
Apply Dic
Exclude Dic

Click here to flash read.

arXiv:2404.14831v2 Announce Type: replace
Abstract: Blocking is a critical step in entity resolution, and the emergence of neural network-based representation models has led to the development of dense blocking as a promising approach for exploring deep semantics in blocking. However, previous advanced self-supervised dense blocking approaches require domain-specific training on the target domain, which limits the benefits and rapid adaptation of these methods. To address this issue, we propose UniBlocker, a dense blocker that is pre-trained on a domain-independent, easily-obtainable tabular corpus using self-supervised contrastive learning. By conducting domain-independent pre-training, UniBlocker can be adapted to various downstream blocking scenarios without requiring domain-specific fine-tuning. To evaluate the universality of our entity blocker, we also construct a new benchmark covering a wide range of blocking tasks from multiple domains and scenarios. Our experiments show that the proposed UniBlocker, without any domain-specific learning, significantly outperforms previous self- and unsupervised dense blocking methods and is comparable and complementary to the state-of-the-art sparse blocking methods.

Click here to read this post out
ID: 822717; Unique Viewers: 0
Unique Voters: 0
Total Votes: 0
Votes:
Latest Change: April 26, 2024, 7:31 a.m. Changes:
Dictionaries:
Words:
Spaces:
Views: 10
CC:
No creative common's license
Comments: