×
Well done. You've clicked the tower. This would actually achieve something if you had logged in first. Use the key for that. The name takes you home. This is where all the applicables sit. And you can't apply any changes to my site unless you are logged in.

Our policy is best summarized as "we don't care about _you_, we care about _them_", no emails, so no forgetting your password. You have no rights. It's like you don't even exist. If you publish material, I reserve the right to remove it, or use it myself.

Don't impersonate. Don't name someone involuntarily. You can lose everything if you cross the line, and no, I won't cancel your automatic payments first, so you'll have to do it the hard way. See how serious this sounds? That's how serious you're meant to take these.

×
Register


Required. 150 characters or fewer. Letters, digits and @/./+/-/_ only.
  • Your password can’t be too similar to your other personal information.
  • Your password must contain at least 8 characters.
  • Your password can’t be a commonly used password.
  • Your password can’t be entirely numeric.

Enter the same password as before, for verification.
Login

Grow A Dic
Define A Word
Make Space
Set Task
Mark Post
Apply Votestyle
Create Votes
(From: saved spaces)
Exclude Votes
Apply Dic
Exclude Dic

Click here to flash read.

arXiv:2404.11794v2 Announce Type: replace
Abstract: We present an approach for automatically generating and testing, in silico, social scientific hypotheses. This automation is made possible by recent advances in large language models (LLM), but the key feature of the approach is the use of structural causal models. Structural causal models provide a language to state hypotheses, a blueprint for constructing LLM-based agents, an experimental design, and a plan for data analysis. The fitted structural causal model becomes an object available for prediction or the planning of follow-on experiments. We demonstrate the approach with several scenarios: a negotiation, a bail hearing, a job interview, and an auction. In each case, causal relationships are both proposed and tested by the system, finding evidence for some and not others. We provide evidence that the insights from these simulations of social interactions are not available to the LLM purely through direct elicitation. When given its proposed structural causal model for each scenario, the LLM is good at predicting the signs of estimated effects, but it cannot reliably predict the magnitudes of those estimates. In the auction experiment, the in silico simulation results closely match the predictions of auction theory, but elicited predictions of the clearing prices from the LLM are inaccurate. However, the LLM's predictions are dramatically improved if the model can condition on the fitted structural causal model. In short, the LLM knows more than it can (immediately) tell.

Click here to read this post out
ID: 822764; Unique Viewers: 0
Unique Voters: 0
Total Votes: 0
Votes:
Latest Change: April 26, 2024, 7:31 a.m. Changes:
Dictionaries:
Words:
Spaces:
Views: 7
CC:
No creative common's license
Comments: