×
Well done. You've clicked the tower. This would actually achieve something if you had logged in first. Use the key for that. The name takes you home. This is where all the applicables sit. And you can't apply any changes to my site unless you are logged in.

Our policy is best summarized as "we don't care about _you_, we care about _them_", no emails, so no forgetting your password. You have no rights. It's like you don't even exist. If you publish material, I reserve the right to remove it, or use it myself.

Don't impersonate. Don't name someone involuntarily. You can lose everything if you cross the line, and no, I won't cancel your automatic payments first, so you'll have to do it the hard way. See how serious this sounds? That's how serious you're meant to take these.

×
Register


Required. 150 characters or fewer. Letters, digits and @/./+/-/_ only.
  • Your password can’t be too similar to your other personal information.
  • Your password must contain at least 8 characters.
  • Your password can’t be a commonly used password.
  • Your password can’t be entirely numeric.

Enter the same password as before, for verification.
Login

Grow A Dic
Define A Word
Make Space
Set Task
Mark Post
Apply Votestyle
Create Votes
(From: saved spaces)
Exclude Votes
Apply Dic
Exclude Dic

Click here to flash read.

arXiv:2404.16391v1 Announce Type: new
Abstract: This paper introduces a novel approach in designing prediction horizons on a generalized predictive control for a DC/DC boost converter. This method involves constructing a closed-loop system model and assessing the impact of different prediction horizons on system stability. In contrast to conventional design approaches that often rely on empirical prediction horizon selection or incorporate non-linear observers, the proposed method establishes a rigorous boundary for the prediction horizon to ensure system stability. This approach facilitates the selection of an appropriate prediction horizon while avoiding excessively short horizons that can lead to instability and preventing the adoption of unnecessarily long horizons that would burden the controller with high computational demands. Finally, the accuracy of the design method has been confirmed through experimental testing. Moreover, it has been demonstrated that the prediction horizon determined by this method reduces the computational burden by 10\%-20\% compared to the empirically selected prediction horizon.

Click here to read this post out
ID: 822776; Unique Viewers: 0
Unique Voters: 0
Total Votes: 0
Votes:
Latest Change: April 26, 2024, 7:31 a.m. Changes:
Dictionaries:
Words:
Spaces:
Views: 8
CC:
No creative common's license
Comments: