×
Well done. You've clicked the tower. This would actually achieve something if you had logged in first. Use the key for that. The name takes you home. This is where all the applicables sit. And you can't apply any changes to my site unless you are logged in.

Our policy is best summarized as "we don't care about _you_, we care about _them_", no emails, so no forgetting your password. You have no rights. It's like you don't even exist. If you publish material, I reserve the right to remove it, or use it myself.

Don't impersonate. Don't name someone involuntarily. You can lose everything if you cross the line, and no, I won't cancel your automatic payments first, so you'll have to do it the hard way. See how serious this sounds? That's how serious you're meant to take these.

×
Register


Required. 150 characters or fewer. Letters, digits and @/./+/-/_ only.
  • Your password can’t be too similar to your other personal information.
  • Your password must contain at least 8 characters.
  • Your password can’t be a commonly used password.
  • Your password can’t be entirely numeric.

Enter the same password as before, for verification.
Login

Grow A Dic
Define A Word
Make Space
Set Task
Mark Post
Apply Votestyle
Create Votes
(From: saved spaces)
Exclude Votes
Apply Dic
Exclude Dic

Click here to flash read.

arXiv:2404.16727v1 Announce Type: new
Abstract: Data-Enabled Predictive Control (DeePC) bypasses the need for system identification by directly leveraging raw data to formulate optimal control policies. However, the size of the optimization problem in DeePC grows linearly with respect to the data size, which prohibits its application due to high computational costs. In this paper, we propose an efficient approximation of DeePC, whose size is invariant with respect to the amount of data collected, via differentiable convex programming. Specifically, the optimization problem in DeePC is decomposed into two parts: a control objective and a scoring function that evaluates the likelihood of a guessed I/O sequence, the latter of which is approximated with a size-invariant learned optimization problem. The proposed method is validated through numerical simulations on a quadruple tank system, illustrating that the learned controller can reduce the computational time of DeePC by 5x while maintaining its control performance.

Click here to read this post out
ID: 822792; Unique Viewers: 0
Unique Voters: 0
Total Votes: 0
Votes:
Latest Change: April 26, 2024, 7:31 a.m. Changes:
Dictionaries:
Words:
Spaces:
Views: 9
CC:
No creative common's license
Comments: