×
Well done. You've clicked the tower. This would actually achieve something if you had logged in first. Use the key for that. The name takes you home. This is where all the applicables sit. And you can't apply any changes to my site unless you are logged in.

Our policy is best summarized as "we don't care about _you_, we care about _them_", no emails, so no forgetting your password. You have no rights. It's like you don't even exist. If you publish material, I reserve the right to remove it, or use it myself.

Don't impersonate. Don't name someone involuntarily. You can lose everything if you cross the line, and no, I won't cancel your automatic payments first, so you'll have to do it the hard way. See how serious this sounds? That's how serious you're meant to take these.

×
Register


Required. 150 characters or fewer. Letters, digits and @/./+/-/_ only.
  • Your password can’t be too similar to your other personal information.
  • Your password must contain at least 8 characters.
  • Your password can’t be a commonly used password.
  • Your password can’t be entirely numeric.

Enter the same password as before, for verification.
Login

Grow A Dic
Define A Word
Make Space
Set Task
Mark Post
Apply Votestyle
Create Votes
(From: saved spaces)
Exclude Votes
Apply Dic
Exclude Dic

Click here to flash read.

arXiv:2404.16357v1 Announce Type: cross
Abstract: The human brain receives complex inputs when performing cognitive tasks, which range from external inputs via the senses to internal inputs from other brain regions. However, the explicit inputs to the brain during a cognitive task remain unclear. Here, we present an input identification framework for reverse engineering the control nodes and the corresponding inputs to the brain. The framework is verified with synthetic data generated by a predefined linear system, indicating it can robustly reconstruct data and recover the inputs. Then we apply the framework to the real motor-task fMRI data from 200 human subjects. Our results show that the model with sparse inputs can reconstruct neural dynamics in motor tasks ($EV=0.779$) and the identified 28 control nodes largely overlap with the motor system. Underpinned by network control theory, our framework offers a general tool for understanding brain inputs.

Click here to read this post out
ID: 822811; Unique Viewers: 0
Unique Voters: 0
Total Votes: 0
Votes:
Latest Change: April 26, 2024, 7:31 a.m. Changes:
Dictionaries:
Words:
Spaces:
Views: 6
CC:
No creative common's license
Comments: