×
Well done. You've clicked the tower. This would actually achieve something if you had logged in first. Use the key for that. The name takes you home. This is where all the applicables sit. And you can't apply any changes to my site unless you are logged in.

Our policy is best summarized as "we don't care about _you_, we care about _them_", no emails, so no forgetting your password. You have no rights. It's like you don't even exist. If you publish material, I reserve the right to remove it, or use it myself.

Don't impersonate. Don't name someone involuntarily. You can lose everything if you cross the line, and no, I won't cancel your automatic payments first, so you'll have to do it the hard way. See how serious this sounds? That's how serious you're meant to take these.

×
Register


Required. 150 characters or fewer. Letters, digits and @/./+/-/_ only.
  • Your password can’t be too similar to your other personal information.
  • Your password must contain at least 8 characters.
  • Your password can’t be a commonly used password.
  • Your password can’t be entirely numeric.

Enter the same password as before, for verification.
Login

Grow A Dic
Define A Word
Make Space
Set Task
Mark Post
Apply Votestyle
Create Votes
(From: saved spaces)
Exclude Votes
Apply Dic
Exclude Dic

Click here to flash read.

arXiv:2306.14938v2 Announce Type: replace
Abstract: While a wide variety of astrophysical and cosmological phenomena suggest the presence of Dark Matter, all evidence remains via its gravitational effect on the known matter. As such, it is conceivable that this evidence could be explained by a modification to gravitation and/or concepts of inertia. Various formulations of modified gravity exist, each giving rise to several non-canonical outcomes. This motivates us to propose an experiment searching for departures from (quantum) Newtonian predictions in a bipartite setting with gravitational accelerations $\lesssim 10^{-10}$ m/s$^2$, i.e., where the effective force needs to be stronger than Newtonian to account for the Dark Matter effects. Since quantum particles naturally source weak gravitation, their non-relativistic dynamics offers opportunities to test this small acceleration regime. We show that two nearby mesoscopic quantum masses accumulate significantly larger entanglement in modified gravity models, such as the Modified Newtonian Dynamics. Our calculations include Casimir-Polder forces as well as tidal effects next to the surface of the earth, and confirm that entanglement is observable within the limits imposed by environmental decoherence. We demonstrate how the temperature can be fine-tuned such that modified gravity is certified simply by witnessing the entanglement generated from uncorrelated thermal states, eliminating the need for precise noise characterization. Overall, the required parameters could be realized in a tabletop experiment.

Click here to read this post out
ID: 822875; Unique Viewers: 0
Unique Voters: 0
Total Votes: 0
Votes:
Latest Change: April 26, 2024, 7:32 a.m. Changes:
Dictionaries:
Words:
Spaces:
Views: 8
CC:
No creative common's license
Comments: