×
Well done. You've clicked the tower. This would actually achieve something if you had logged in first. Use the key for that. The name takes you home. This is where all the applicables sit. And you can't apply any changes to my site unless you are logged in.

Our policy is best summarized as "we don't care about _you_, we care about _them_", no emails, so no forgetting your password. You have no rights. It's like you don't even exist. If you publish material, I reserve the right to remove it, or use it myself.

Don't impersonate. Don't name someone involuntarily. You can lose everything if you cross the line, and no, I won't cancel your automatic payments first, so you'll have to do it the hard way. See how serious this sounds? That's how serious you're meant to take these.

×
Register


Required. 150 characters or fewer. Letters, digits and @/./+/-/_ only.
  • Your password can’t be too similar to your other personal information.
  • Your password must contain at least 8 characters.
  • Your password can’t be a commonly used password.
  • Your password can’t be entirely numeric.

Enter the same password as before, for verification.
Login

Grow A Dic
Define A Word
Make Space
Set Task
Mark Post
Apply Votestyle
Create Votes
(From: saved spaces)
Exclude Votes
Apply Dic
Exclude Dic

Click here to flash read.

arXiv:2311.01445v2 Announce Type: replace-cross
Abstract: We investigate how the photon polarization is affected by the interaction with axion-like particles (ALPs) in the rotating magnetic field of a neutron star (NS). Using quantum Boltzmann equations the study demonstrates that the periodic magnetic field of millisecond NSs enhances the interaction of photons with ALPs and creates a circular polarization on them. A binary system including an NS and a companion star could serve as a probe. When the NS is in front of the companion star with respect to the earth observer, there is a circular polarization on the previously linearly polarized photons as a result of the interaction with ALPs there. After a half-binary period, the companion star passes in front of the NS, and the circular polarization of photons disappears and changes to linear. The excluded parameter space for a millisecond NS with 300~Hz rotating frequency, highlights the coupling constant of $1.7\times10^{-11}~\text{GeV}^{-1}\leq g_{a\gamma\gamma}\leq1.6\times10^{-3}~\text{GeV}^{-1}$ for the ALP masses in the range of $7\times10^{-12}~\text{eV}\leq m_a\leq1.5\times 10^{3}~\text{eV}$.

Click here to read this post out
ID: 822883; Unique Viewers: 0
Unique Voters: 0
Total Votes: 0
Votes:
Latest Change: April 26, 2024, 7:32 a.m. Changes:
Dictionaries:
Words:
Spaces:
Views: 8
CC:
No creative common's license
Comments: