×
Well done. You've clicked the tower. This would actually achieve something if you had logged in first. Use the key for that. The name takes you home. This is where all the applicables sit. And you can't apply any changes to my site unless you are logged in.

Our policy is best summarized as "we don't care about _you_, we care about _them_", no emails, so no forgetting your password. You have no rights. It's like you don't even exist. If you publish material, I reserve the right to remove it, or use it myself.

Don't impersonate. Don't name someone involuntarily. You can lose everything if you cross the line, and no, I won't cancel your automatic payments first, so you'll have to do it the hard way. See how serious this sounds? That's how serious you're meant to take these.

×
Register


Required. 150 characters or fewer. Letters, digits and @/./+/-/_ only.
  • Your password can’t be too similar to your other personal information.
  • Your password must contain at least 8 characters.
  • Your password can’t be a commonly used password.
  • Your password can’t be entirely numeric.

Enter the same password as before, for verification.
Login

Grow A Dic
Define A Word
Make Space
Set Task
Mark Post
Apply Votestyle
Create Votes
(From: saved spaces)
Exclude Votes
Apply Dic
Exclude Dic

Click here to flash read.

arXiv:2404.16589v1 Announce Type: new
Abstract: The generalized Lefschetz thimble method is a promising approach that attempts to solve the sign problem in Monte Carlo methods by deforming the integration contour using the flow equation. Here we point out a general problem that occurs due to the property of the flow equation, which extends a region on the original contour exponentially to a region on the deformed contour. Since the growth rate for each eigenmode is governed by the singular values of the Hessian of the action, a huge hierarchy in the singular value spectrum, which typically appears for large systems, leads to various technical problems in numerical simulations. We solve this hierarchical growth problem by preconditioning the flow so that the growth rate becomes identical for every eigenmode. As an example, we show that the preconditioned flow enables us to investigate the real-time quantum evolution of an anharmonic oscillator with the system size that can hardly be achieved by using the original flow.

Click here to read this post out
ID: 822902; Unique Viewers: 0
Unique Voters: 0
Total Votes: 0
Votes:
Latest Change: April 26, 2024, 7:32 a.m. Changes:
Dictionaries:
Words:
Spaces:
Views: 10
CC:
No creative common's license
Comments: