×
Well done. You've clicked the tower. This would actually achieve something if you had logged in first. Use the key for that. The name takes you home. This is where all the applicables sit. And you can't apply any changes to my site unless you are logged in.

Our policy is best summarized as "we don't care about _you_, we care about _them_", no emails, so no forgetting your password. You have no rights. It's like you don't even exist. If you publish material, I reserve the right to remove it, or use it myself.

Don't impersonate. Don't name someone involuntarily. You can lose everything if you cross the line, and no, I won't cancel your automatic payments first, so you'll have to do it the hard way. See how serious this sounds? That's how serious you're meant to take these.

×
Register


Required. 150 characters or fewer. Letters, digits and @/./+/-/_ only.
  • Your password can’t be too similar to your other personal information.
  • Your password must contain at least 8 characters.
  • Your password can’t be a commonly used password.
  • Your password can’t be entirely numeric.

Enter the same password as before, for verification.
Login

Grow A Dic
Define A Word
Make Space
Set Task
Mark Post
Apply Votestyle
Create Votes
(From: saved spaces)
Exclude Votes
Apply Dic
Exclude Dic

Click here to flash read.

arXiv:2307.13954v3 Announce Type: replace
Abstract: We study the phase structure of bifundamental quantum chromodynamics (QCD(BF)), which is the $4$-dimensional $SU(N) \times SU(N)$ gauge theory coupled with the bifundamental fermion. Firstly, we refine constraints on its phase diagram from 't Hooft anomalies and global inconsistencies, and we find more severe constraints than those in previous literature about QCD(BF). Secondly, we employ the recently-proposed semiclassical approach for confining vacua to investigate this model concretely, and this is made possible via anomaly-preserving $T^2$ compactification. For sufficiently small $T^2$ with the 't Hooft flux, the dilute gas approximation of center vortices gives reliable semiclassical computations, and we determine the phase diagram as a function of the fermion mass $m$, two strong scales $\Lambda_{1},\Lambda_2$, and two vacuum angles, $\theta_1, \theta_2$. In particular, we find that the QCD(BF) vacuum respects the $\mathbb{Z}_2$ exchange symmetry of two gauge groups. Under the assumption of the adiabatic continuity, our result successfully explains one of the conjectured phase diagrams in the previous literature and also gives positive support for the nonperturbative validity of the large-$N$ orbifold equivalence between QCD(BF) and $\mathcal{N}=1$ $SU(2N)$ supersymmetric Yang-Mills theory. We also comment on problems of domain walls.

Click here to read this post out
ID: 822985; Unique Viewers: 0
Unique Voters: 0
Total Votes: 0
Votes:
Latest Change: April 26, 2024, 7:32 a.m. Changes:
Dictionaries:
Words:
Spaces:
Views: 7
CC:
No creative common's license
Comments: