×
Well done. You've clicked the tower. This would actually achieve something if you had logged in first. Use the key for that. The name takes you home. This is where all the applicables sit. And you can't apply any changes to my site unless you are logged in.

Our policy is best summarized as "we don't care about _you_, we care about _them_", no emails, so no forgetting your password. You have no rights. It's like you don't even exist. If you publish material, I reserve the right to remove it, or use it myself.

Don't impersonate. Don't name someone involuntarily. You can lose everything if you cross the line, and no, I won't cancel your automatic payments first, so you'll have to do it the hard way. See how serious this sounds? That's how serious you're meant to take these.

×
Register


Required. 150 characters or fewer. Letters, digits and @/./+/-/_ only.
  • Your password can’t be too similar to your other personal information.
  • Your password must contain at least 8 characters.
  • Your password can’t be a commonly used password.
  • Your password can’t be entirely numeric.

Enter the same password as before, for verification.
Login

Grow A Dic
Define A Word
Make Space
Set Task
Mark Post
Apply Votestyle
Create Votes
(From: saved spaces)
Exclude Votes
Apply Dic
Exclude Dic

Click here to flash read.

arXiv:2404.16220v1 Announce Type: new
Abstract: Every Boolean bent function $f$ can be written either as a concatenation $f=f_1||f_2$ of two complementary semi-bent functions $f_1,f_2$; or as a concatenation $f=f_1||f_2||f_3||f_4$ of four Boolean functions $f_1,f_2,f_3,f_4$, all of which are simultaneously bent, semi-bent, or 5-valued spectra-functions. In this context, it is essential to ask: When does a bent concatenation $f$ (not) belong to the completed Maiorana-McFarland class $\mathcal{M}^\#$? In this article, we answer this question completely by providing a full characterization of the structure of $\mathcal{M}$-subspaces for the concatenation of the form $f=f_1||f_2$ and $f=f_1||f_2||f_3||f_4$, which allows us to specify the necessary and sufficient conditions so that $f$ is outside $\mathcal{M}^\#$. Based on these conditions, we propose several explicit design methods of specifying bent functions outside $\mathcal{M}^\#$ in the special case when $f=g||h||g||(h+1)$, where $g$ and $h$ are bent functions.

Click here to read this post out
ID: 823017; Unique Viewers: 0
Unique Voters: 0
Total Votes: 0
Votes:
Latest Change: April 26, 2024, 7:32 a.m. Changes:
Dictionaries:
Words:
Spaces:
Views: 9
CC:
No creative common's license
Comments: