×
Well done. You've clicked the tower. This would actually achieve something if you had logged in first. Use the key for that. The name takes you home. This is where all the applicables sit. And you can't apply any changes to my site unless you are logged in.

Our policy is best summarized as "we don't care about _you_, we care about _them_", no emails, so no forgetting your password. You have no rights. It's like you don't even exist. If you publish material, I reserve the right to remove it, or use it myself.

Don't impersonate. Don't name someone involuntarily. You can lose everything if you cross the line, and no, I won't cancel your automatic payments first, so you'll have to do it the hard way. See how serious this sounds? That's how serious you're meant to take these.

×
Register


Required. 150 characters or fewer. Letters, digits and @/./+/-/_ only.
  • Your password can’t be too similar to your other personal information.
  • Your password must contain at least 8 characters.
  • Your password can’t be a commonly used password.
  • Your password can’t be entirely numeric.

Enter the same password as before, for verification.
Login

Grow A Dic
Define A Word
Make Space
Set Task
Mark Post
Apply Votestyle
Create Votes
(From: saved spaces)
Exclude Votes
Apply Dic
Exclude Dic

Click here to flash read.

arXiv:2404.16394v1 Announce Type: new
Abstract: Integrated sensing and communication (ISAC) is expected to play a prominent role among emerging technologies in future wireless communications. In particular, a communication radar coexistence system is degraded significantly by mutual interference. In this work, given the advantages of promising reconfigurable intelligent surface (RIS), we propose a simultaneously transmitting and reflecting RIS (STAR-RIS)-assisted radar coexistence system where a STAR-RIS is introduced to improve the communication performance while suppressing the mutual interference and providing full space coverage. Based on the realistic conditions of correlated fading, and the presence of multiple user equipments (UEs) at both sides of the RIS, we derive the achievable rates at the radar and the communication receiver side in closed forms in terms of statistical channel state information (CSI). Next, we perform alternating optimization (AO) for optimizing the STAR-RIS and the radar beamforming. Regarding the former, we optimize the amplitudes and phase shifts of the STAR-RIS through a projected gradient ascent algorithm (PGAM) simultaneously with respect to the amplitudes and phase shifts of the surface for both energy splitting (ES) and mode switching (MS) operation protocols. The proposed optimization saves enough overhead since it can be performed every several coherence intervals. This property is particularly beneficial compared to reflecting-only RIS because a STAR-RIS includes the double number of variables, which require increased overhead. Finally, simulation results illustrate how the proposed architecture outperforms the conventional RIS counterpart, and show how the various parameters affect the performance. Moreover, a benchmark full instantaneous CSI (I-CSI) based design is provided and shown to result in higher sum-rate but also in large overhead associated with complexity.

Click here to read this post out
ID: 823049; Unique Viewers: 0
Unique Voters: 0
Total Votes: 0
Votes:
Latest Change: April 26, 2024, 7:32 a.m. Changes:
Dictionaries:
Words:
Spaces:
Views: 7
CC:
No creative common's license
Comments: