×
Well done. You've clicked the tower. This would actually achieve something if you had logged in first. Use the key for that. The name takes you home. This is where all the applicables sit. And you can't apply any changes to my site unless you are logged in.

Our policy is best summarized as "we don't care about _you_, we care about _them_", no emails, so no forgetting your password. You have no rights. It's like you don't even exist. If you publish material, I reserve the right to remove it, or use it myself.

Don't impersonate. Don't name someone involuntarily. You can lose everything if you cross the line, and no, I won't cancel your automatic payments first, so you'll have to do it the hard way. See how serious this sounds? That's how serious you're meant to take these.

×
Register


Required. 150 characters or fewer. Letters, digits and @/./+/-/_ only.
  • Your password can’t be too similar to your other personal information.
  • Your password must contain at least 8 characters.
  • Your password can’t be a commonly used password.
  • Your password can’t be entirely numeric.

Enter the same password as before, for verification.
Login

Grow A Dic
Define A Word
Make Space
Set Task
Mark Post
Apply Votestyle
Create Votes
(From: saved spaces)
Exclude Votes
Apply Dic
Exclude Dic

Click here to flash read.

arXiv:2404.16287v1 Announce Type: cross
Abstract: Differentially private federated learning is crucial for maintaining privacy in distributed environments. This paper investigates the challenges of high-dimensional estimation and inference under the constraints of differential privacy. First, we study scenarios involving an untrusted central server, demonstrating the inherent difficulties of accurate estimation in high-dimensional problems. Our findings indicate that the tight minimax rates depends on the high-dimensionality of the data even with sparsity assumptions. Second, we consider a scenario with a trusted central server and introduce a novel federated estimation algorithm tailored for linear regression models. This algorithm effectively handles the slight variations among models distributed across different machines. We also propose methods for statistical inference, including coordinate-wise confidence intervals for individual parameters and strategies for simultaneous inference. Extensive simulation experiments support our theoretical advances, underscoring the efficacy and reliability of our approaches.

Click here to read this post out
ID: 823141; Unique Viewers: 0
Unique Voters: 0
Total Votes: 0
Votes:
Latest Change: April 26, 2024, 7:32 a.m. Changes:
Dictionaries:
Words:
Spaces:
Views: 8
CC:
No creative common's license
Comments: