×
Well done. You've clicked the tower. This would actually achieve something if you had logged in first. Use the key for that. The name takes you home. This is where all the applicables sit. And you can't apply any changes to my site unless you are logged in.

Our policy is best summarized as "we don't care about _you_, we care about _them_", no emails, so no forgetting your password. You have no rights. It's like you don't even exist. If you publish material, I reserve the right to remove it, or use it myself.

Don't impersonate. Don't name someone involuntarily. You can lose everything if you cross the line, and no, I won't cancel your automatic payments first, so you'll have to do it the hard way. See how serious this sounds? That's how serious you're meant to take these.

×
Register


Required. 150 characters or fewer. Letters, digits and @/./+/-/_ only.
  • Your password can’t be too similar to your other personal information.
  • Your password must contain at least 8 characters.
  • Your password can’t be a commonly used password.
  • Your password can’t be entirely numeric.

Enter the same password as before, for verification.
Login

Grow A Dic
Define A Word
Make Space
Set Task
Mark Post
Apply Votestyle
Create Votes
(From: saved spaces)
Exclude Votes
Apply Dic
Exclude Dic

Click here to flash read.

arXiv:2404.16404v1 Announce Type: cross
Abstract: $U(N)^{\otimes r} \otimes O(N)^{\otimes q}$ invariants are constructed by contractions of complex tensors of order $r+q$, also denoted $(r,q)$. These tensors transform under $r$ fundamental representations of the unitary group $U(N)$ and $q$ fundamental representations of the orthogonal group $O(N)$. Therefore, $U(N)^{\otimes r} \otimes O(N)^{\otimes q}$ invariants are tensor model observables endowed with a tensor field of order $(r,q)$. We enumerate these observables using group theoretic formulae, for arbitrary tensor fields of order $(r,q)$. Inspecting lower-order cases reveals that, at order $(1,1)$, the number of invariants corresponds to a number of 2- or 4-ary necklaces that exhibit pattern avoidance, offering insights into enumerative combinatorics. For a general order $(r,q)$, the counting can be interpreted as the partition function of a topological quantum field theory (TQFT) with the symmetric group serving as gauge group. We identify the 2-complex pertaining to the enumeration of the invariants, which in turn defines the TQFT, and establish a correspondence with countings associated with covers of diverse topologies. For $r>1$, the number of invariants matches the number of ($q$-dependent) weighted equivalence classes of branched covers of the 2-sphere with $r$ branched points. At $r=1$, the counting maps to the enumeration of branched covers of the 2-sphere with $q+3$ branched points. The formalism unveils a wide array of novel integer sequences that have not been previously documented. We also provide various codes for running computational experiments.

Click here to read this post out
ID: 823142; Unique Viewers: 0
Unique Voters: 0
Total Votes: 0
Votes:
Latest Change: April 26, 2024, 7:32 a.m. Changes:
Dictionaries:
Words:
Spaces:
Views: 8
CC:
No creative common's license
Comments: