×
Well done. You've clicked the tower. This would actually achieve something if you had logged in first. Use the key for that. The name takes you home. This is where all the applicables sit. And you can't apply any changes to my site unless you are logged in.

Our policy is best summarized as "we don't care about _you_, we care about _them_", no emails, so no forgetting your password. You have no rights. It's like you don't even exist. If you publish material, I reserve the right to remove it, or use it myself.

Don't impersonate. Don't name someone involuntarily. You can lose everything if you cross the line, and no, I won't cancel your automatic payments first, so you'll have to do it the hard way. See how serious this sounds? That's how serious you're meant to take these.

×
Register


Required. 150 characters or fewer. Letters, digits and @/./+/-/_ only.
  • Your password can’t be too similar to your other personal information.
  • Your password must contain at least 8 characters.
  • Your password can’t be a commonly used password.
  • Your password can’t be entirely numeric.

Enter the same password as before, for verification.
Login

Grow A Dic
Define A Word
Make Space
Set Task
Mark Post
Apply Votestyle
Create Votes
(From: saved spaces)
Exclude Votes
Apply Dic
Exclude Dic

Click here to flash read.

arXiv:1706.04816v3 Announce Type: replace
Abstract: In this article we investigate a monoid of smooth mappings on the space of arrows of a Lie groupoid and its group of units. The group of units turns out to be an infinite-dimensional Lie group which is regular in the sense of Milnor. Furthermore, this group is closely connected to the group of bisections of the Lie groupoid. Under suitable conditions, i.e. the source map of the Lie groupoid is proper, one also obtains a differentiable structure on the monoid and can identify the bisection group as a Lie subgroup of its group of units. Finally, relations between groupoids associated to the underlying Lie groupoid and subgroups of the monoid are obtained. The key tool driving the investigation is a generalisation of a result by A. Stacey which we establish in the present article. This result, called the Stacey-Roberts Lemma, asserts that pushforwards of submersions yield submersions between the infinite-dimensional manifolds of mappings.

Click here to read this post out
ID: 823163; Unique Viewers: 0
Unique Voters: 0
Total Votes: 0
Votes:
Latest Change: April 26, 2024, 7:32 a.m. Changes:
Dictionaries:
Words:
Spaces:
Views: 11
CC:
No creative common's license
Comments: