×
Well done. You've clicked the tower. This would actually achieve something if you had logged in first. Use the key for that. The name takes you home. This is where all the applicables sit. And you can't apply any changes to my site unless you are logged in.

Our policy is best summarized as "we don't care about _you_, we care about _them_", no emails, so no forgetting your password. You have no rights. It's like you don't even exist. If you publish material, I reserve the right to remove it, or use it myself.

Don't impersonate. Don't name someone involuntarily. You can lose everything if you cross the line, and no, I won't cancel your automatic payments first, so you'll have to do it the hard way. See how serious this sounds? That's how serious you're meant to take these.

×
Register


Required. 150 characters or fewer. Letters, digits and @/./+/-/_ only.
  • Your password can’t be too similar to your other personal information.
  • Your password must contain at least 8 characters.
  • Your password can’t be a commonly used password.
  • Your password can’t be entirely numeric.

Enter the same password as before, for verification.
Login

Grow A Dic
Define A Word
Make Space
Set Task
Mark Post
Apply Votestyle
Create Votes
(From: saved spaces)
Exclude Votes
Apply Dic
Exclude Dic

Click here to flash read.

arXiv:2303.12402v3 Announce Type: replace
Abstract: The COVID-19 pandemic has been a recent example for the spread of a harmful contagion in large populations. Moreover, the spread of harmful contagions is not only restricted to an infectious disease, but is also relevant to computer viruses and malware in computer networks. Furthermore, the spread of fake news and propaganda in online social networks is also of major concern. In this study, we introduce the measure-based spread minimization problem (MBSMP), which can help policy makers in minimizing the spread of harmful contagions in large networks. We develop exact solution methods based on branch-and-Benders-cut algorithms that make use of the application of Benders decomposition method to two different mixed-integer programming formulations of the MBSMP: an arc-based formulation and a path-based formulation. We show that for both formulations the Benders optimality cuts can be generated using a combinatorial procedure rather than solving the dual subproblems using linear programming. Additional improvements such as using scenario-dependent extended seed sets, initial cuts, and a starting heuristic are also incorporated into our branch-and-Benders-cut algorithms. We investigate the contribution of various components of the solution algorithms to the performance on the basis of computational results obtained on a set of instances derived from existing ones in the literature.

Click here to read this post out
ID: 823190; Unique Viewers: 0
Unique Voters: 0
Total Votes: 0
Votes:
Latest Change: April 26, 2024, 7:32 a.m. Changes:
Dictionaries:
Words:
Spaces:
Views: 9
CC:
No creative common's license
Comments: