×
Well done. You've clicked the tower. This would actually achieve something if you had logged in first. Use the key for that. The name takes you home. This is where all the applicables sit. And you can't apply any changes to my site unless you are logged in.

Our policy is best summarized as "we don't care about _you_, we care about _them_", no emails, so no forgetting your password. You have no rights. It's like you don't even exist. If you publish material, I reserve the right to remove it, or use it myself.

Don't impersonate. Don't name someone involuntarily. You can lose everything if you cross the line, and no, I won't cancel your automatic payments first, so you'll have to do it the hard way. See how serious this sounds? That's how serious you're meant to take these.

×
Register


Required. 150 characters or fewer. Letters, digits and @/./+/-/_ only.
  • Your password can’t be too similar to your other personal information.
  • Your password must contain at least 8 characters.
  • Your password can’t be a commonly used password.
  • Your password can’t be entirely numeric.

Enter the same password as before, for verification.
Login

Grow A Dic
Define A Word
Make Space
Set Task
Mark Post
Apply Votestyle
Create Votes
(From: saved spaces)
Exclude Votes
Apply Dic
Exclude Dic

Click here to flash read.

arXiv:2303.17521v3 Announce Type: replace
Abstract: We consider an independent and identically distributed (i.i.d.) random dynamical system of simple linear transformations on the unit interval $T_{\beta}(x)=\beta x$ (mod $1$), $x\in[0,1]$, $\beta>0$, which are the so-called beta-transformations. For such a random dynamical system, including the case that it is generated by uncountably many maps, we give an explicit formula for the density function of a unique stationary measure under the assumption that the random dynamics is expanding in mean. As an application, in the case that the random dynamics is generated by finitely many maps and the maps are chosen according to a Bernoulli measure, we show that the density function is analytic as a function of parameter in the Bernoulli measure and give its derivative explicitly. Furthermore, for a non-i.i.d. random dynamical system of beta-transformations, we also give an explicit formula for the random densities of a unique absolutely continuous invariant measure under a certain strong expanding condition or under the assumption that the maps randomly chosen are close to the beta-transformation for a non-simple number in the sense of parameter $\beta$.

Click here to read this post out
ID: 823193; Unique Viewers: 0
Unique Voters: 0
Total Votes: 0
Votes:
Latest Change: April 26, 2024, 7:32 a.m. Changes:
Dictionaries:
Words:
Spaces:
Views: 7
CC:
No creative common's license
Comments: