×
Well done. You've clicked the tower. This would actually achieve something if you had logged in first. Use the key for that. The name takes you home. This is where all the applicables sit. And you can't apply any changes to my site unless you are logged in.

Our policy is best summarized as "we don't care about _you_, we care about _them_", no emails, so no forgetting your password. You have no rights. It's like you don't even exist. If you publish material, I reserve the right to remove it, or use it myself.

Don't impersonate. Don't name someone involuntarily. You can lose everything if you cross the line, and no, I won't cancel your automatic payments first, so you'll have to do it the hard way. See how serious this sounds? That's how serious you're meant to take these.

×
Register


Required. 150 characters or fewer. Letters, digits and @/./+/-/_ only.
  • Your password can’t be too similar to your other personal information.
  • Your password must contain at least 8 characters.
  • Your password can’t be a commonly used password.
  • Your password can’t be entirely numeric.

Enter the same password as before, for verification.
Login

Grow A Dic
Define A Word
Make Space
Set Task
Mark Post
Apply Votestyle
Create Votes
(From: saved spaces)
Exclude Votes
Apply Dic
Exclude Dic

Click here to flash read.

arXiv:2401.15491v2 Announce Type: replace
Abstract: Differential privacy (DP) is a class of mathematical standards for assessing the privacy provided by a data-release mechanism. This work concerns two important flavors of DP that are related yet conceptually distinct: pure $\epsilon$-differential privacy ($\epsilon$-DP) and Pufferfish privacy. We restate $\epsilon$-DP and Pufferfish privacy as Lipschitz continuity conditions and provide their formulations in terms of an object from the imprecise probability literature: the interval of measures. We use these formulations to derive limits on key quantities in frequentist hypothesis testing and in Bayesian inference using data that are sanitised according to either of these two privacy standards. Under very mild conditions, the results in this work are valid for arbitrary parameters, priors and data generating models. These bounds are weaker than those attainable when analysing specific data generating models or data-release mechanisms. However, they provide generally applicable limits on the ability to learn from differentially private data - even when the analyst's knowledge of the model or mechanism is limited. They also shed light on the semantic interpretations of the two DP flavors under examination, a subject of contention in the current literature.

Click here to read this post out
ID: 823231; Unique Viewers: 0
Unique Voters: 0
Total Votes: 0
Votes:
Latest Change: April 26, 2024, 7:32 a.m. Changes:
Dictionaries:
Words:
Spaces:
Views: 7
CC:
No creative common's license
Comments: