×
Well done. You've clicked the tower. This would actually achieve something if you had logged in first. Use the key for that. The name takes you home. This is where all the applicables sit. And you can't apply any changes to my site unless you are logged in.

Our policy is best summarized as "we don't care about _you_, we care about _them_", no emails, so no forgetting your password. You have no rights. It's like you don't even exist. If you publish material, I reserve the right to remove it, or use it myself.

Don't impersonate. Don't name someone involuntarily. You can lose everything if you cross the line, and no, I won't cancel your automatic payments first, so you'll have to do it the hard way. See how serious this sounds? That's how serious you're meant to take these.

×
Register


Required. 150 characters or fewer. Letters, digits and @/./+/-/_ only.
  • Your password can’t be too similar to your other personal information.
  • Your password must contain at least 8 characters.
  • Your password can’t be a commonly used password.
  • Your password can’t be entirely numeric.

Enter the same password as before, for verification.
Login

Grow A Dic
Define A Word
Make Space
Set Task
Mark Post
Apply Votestyle
Create Votes
(From: saved spaces)
Exclude Votes
Apply Dic
Exclude Dic

Click here to flash read.

arXiv:2404.14937v2 Announce Type: replace
Abstract: For an oriented graph $D$, the $inversion$ of $X \subseteq V(D)$ in $D$ is the digraph obtained from $D$ by reversing the direction of all arcs with both ends in $X$. The inversion number of $D$, denoted by $inv(D)$, is the minimum number of inversions needed to transform $D$ into an acyclic digraph. In this paper, we first show that $inv (\overrightarrow{C_3} \Rightarrow D)= inv(D) +1$ for any oriented graph $\textit{D}$ with even inversion number $inv(D)$, where the dijoin $\overrightarrow{C_3} \Rightarrow D$ is the oriented graph obtained from the disjoint union of $\overrightarrow{C_3}$ and $D$ by adding all arcs from $\overrightarrow{C_3}$ to $D$. Thus we disprove the conjecture of Aubian el at. \cite{2212.09188} and the conjecture of Alon el at. \cite{2212.11969}. We also study the blow-up graph which is an oriented graph obtained from a tournament by replacing all vertices into oriented graphs. We construct a tournament $T$ with order $n$ and $inv(T)=\frac{n}{3}+1$ using blow-up graphs.

Click here to read this post out
ID: 823253; Unique Viewers: 0
Unique Voters: 0
Total Votes: 0
Votes:
Latest Change: April 26, 2024, 7:32 a.m. Changes:
Dictionaries:
Words:
Spaces:
Views: 9
CC:
No creative common's license
Comments: