×
Well done. You've clicked the tower. This would actually achieve something if you had logged in first. Use the key for that. The name takes you home. This is where all the applicables sit. And you can't apply any changes to my site unless you are logged in.

Our policy is best summarized as "we don't care about _you_, we care about _them_", no emails, so no forgetting your password. You have no rights. It's like you don't even exist. If you publish material, I reserve the right to remove it, or use it myself.

Don't impersonate. Don't name someone involuntarily. You can lose everything if you cross the line, and no, I won't cancel your automatic payments first, so you'll have to do it the hard way. See how serious this sounds? That's how serious you're meant to take these.

×
Register


Required. 150 characters or fewer. Letters, digits and @/./+/-/_ only.
  • Your password can’t be too similar to your other personal information.
  • Your password must contain at least 8 characters.
  • Your password can’t be a commonly used password.
  • Your password can’t be entirely numeric.

Enter the same password as before, for verification.
Login

Grow A Dic
Define A Word
Make Space
Set Task
Mark Post
Apply Votestyle
Create Votes
(From: saved spaces)
Exclude Votes
Apply Dic
Exclude Dic

Click here to flash read.

arXiv:2401.03051v2 Announce Type: replace-cross
Abstract: This paper deals with the convergence analysis of the SUCPA (Semi Unsupervised Calibration through Prior Adaptation) algorithm, defined from a first-order non-linear difference equations, first developed to correct the scores output by a supervised machine learning classifier. The convergence analysis is addressed as a dynamical system problem, by studying the local and global stability of the nonlinear map derived from the algorithm. This map, which is defined by a composition of exponential and rational functions, turns out to be non-hyperbolic with a non-bounded set of non-isolated fixed points. Hence, a non-standard method for solving the convergence analysis is used consisting of an ad-hoc geometrical approach. For a binary classification problem (two-dimensional map), we rigorously prove that the map is globally asymptotically stable. Numerical experiments on real-world application are performed to support the theoretical results by means of two different classification problems: Sentiment Polarity performed with a Large Language Model and Cat-Dog Image classification. For a greater number of classes, the numerical evidence shows the same behavior of the algorithm, and this is illustrated with a Natural Language Inference example. The experiment codes are publicly accessible online at the following repository: https://github.com/LautaroEst/sucpa-convergence

Click here to read this post out
ID: 823278; Unique Viewers: 0
Unique Voters: 0
Total Votes: 0
Votes:
Latest Change: April 26, 2024, 7:32 a.m. Changes:
Dictionaries:
Words:
Spaces:
Views: 7
CC:
No creative common's license
Comments: