×
Well done. You've clicked the tower. This would actually achieve something if you had logged in first. Use the key for that. The name takes you home. This is where all the applicables sit. And you can't apply any changes to my site unless you are logged in.

Our policy is best summarized as "we don't care about _you_, we care about _them_", no emails, so no forgetting your password. You have no rights. It's like you don't even exist. If you publish material, I reserve the right to remove it, or use it myself.

Don't impersonate. Don't name someone involuntarily. You can lose everything if you cross the line, and no, I won't cancel your automatic payments first, so you'll have to do it the hard way. See how serious this sounds? That's how serious you're meant to take these.

×
Register


Required. 150 characters or fewer. Letters, digits and @/./+/-/_ only.
  • Your password can’t be too similar to your other personal information.
  • Your password must contain at least 8 characters.
  • Your password can’t be a commonly used password.
  • Your password can’t be entirely numeric.

Enter the same password as before, for verification.
Login

Grow A Dic
Define A Word
Make Space
Set Task
Mark Post
Apply Votestyle
Create Votes
(From: saved spaces)
Exclude Votes
Apply Dic
Exclude Dic

Click here to flash read.

arXiv:2404.16751v1 Announce Type: cross
Abstract: In this work we give an efficient construction of unitary $k$-designs using $\tilde{O}(k\cdot poly(n))$ quantum gates, as well as an efficient construction of a parallel-secure pseudorandom unitary (PRU). Both results are obtained by giving an efficient quantum algorithm that lifts random permutations over $S(N)$ to random unitaries over $U(N)$ for $N=2^n$. In particular, we show that products of exponentiated sums of $S(N)$ permutations with random phases approximately match the first $2^{\Omega(n)}$ moments of the Haar measure. By substituting either $\tilde{O}(k)$-wise independent permutations, or quantum-secure pseudorandom permutations (PRPs) in place of the random permutations, we obtain the above results. The heart of our proof is a conceptual connection between the large dimension (large-$N$) expansion in random matrix theory and the polynomial method, which allows us to prove query lower bounds at finite-$N$ by interpolating from the much simpler large-$N$ limit. The key technical step is to exhibit an orthonormal basis for irreducible representations of the partition algebra that has a low-degree large-$N$ expansion. This allows us to show that the distinguishing probability is a low-degree rational polynomial of the dimension $N$.

Click here to read this post out
ID: 823299; Unique Viewers: 0
Unique Voters: 0
Total Votes: 0
Votes:
Latest Change: April 26, 2024, 7:32 a.m. Changes:
Dictionaries:
Words:
Spaces:
Views: 7
CC:
No creative common's license
Comments: