×
Well done. You've clicked the tower. This would actually achieve something if you had logged in first. Use the key for that. The name takes you home. This is where all the applicables sit. And you can't apply any changes to my site unless you are logged in.

Our policy is best summarized as "we don't care about _you_, we care about _them_", no emails, so no forgetting your password. You have no rights. It's like you don't even exist. If you publish material, I reserve the right to remove it, or use it myself.

Don't impersonate. Don't name someone involuntarily. You can lose everything if you cross the line, and no, I won't cancel your automatic payments first, so you'll have to do it the hard way. See how serious this sounds? That's how serious you're meant to take these.

×
Register


Required. 150 characters or fewer. Letters, digits and @/./+/-/_ only.
  • Your password can’t be too similar to your other personal information.
  • Your password must contain at least 8 characters.
  • Your password can’t be a commonly used password.
  • Your password can’t be entirely numeric.

Enter the same password as before, for verification.
Login

Grow A Dic
Define A Word
Make Space
Set Task
Mark Post
Apply Votestyle
Create Votes
(From: saved spaces)
Exclude Votes
Apply Dic
Exclude Dic

Click here to flash read.

arXiv:2310.19533v2 Announce Type: replace-cross
Abstract: We consider a classical problem about dynamic instability that leads to the Langmuir circulation. The problem statement assumes that there is initially a wind-driven shear flow and a plane surface wave propagating in the direction of the flow. The unstable mode is a superposition of i) shear flow and ii) surface waves both modulated in the horizontal spanwise direction and iii) circulation that is made up with vortices forming near-surface rolls whose axis are coaligned along the shear flow streamlines and whose transverse size corresponds to the modulation period. Usually, the Langmuir circulation is understood as the vortical part of the mode slowly varying in time, which is the combination of the first and the last flows. The novelty of our approach is that we, firstly, take into account the scattering of the initial surface wave on the slow current. Second, we find the interference of the scattered and the initial waves generating a Stokes drift modulated in the same direction. Third, we establish the subsequent affect of the circulation by the vortex force created by the nonlinear interaction of the initial shear flow and the modulated part of the Stokes drift. S. Leibovich & A.D.D. Craik previously showed that the third part of the mechanism could maintain the Langmuir circulation. We calculate the growth rate which is approximately twice smaller than that obtained by A.D.D. Craik. The vertical structure of the circulation in the mode consists of two vortices, that corresponds to the next mode in Craik's model. Considering the wave scattering, we describe the fast-wave motion as a potential flow with relatively weak vortical correction. Application of the technique can be expanded on other flows where fast oscillating surface waves coexist with a slow current.

Click here to read this post out
ID: 823326; Unique Viewers: 0
Unique Voters: 0
Total Votes: 0
Votes:
Latest Change: April 26, 2024, 7:32 a.m. Changes:
Dictionaries:
Words:
Spaces:
Views: 10
CC:
No creative common's license
Comments: