×
Well done. You've clicked the tower. This would actually achieve something if you had logged in first. Use the key for that. The name takes you home. This is where all the applicables sit. And you can't apply any changes to my site unless you are logged in.

Our policy is best summarized as "we don't care about _you_, we care about _them_", no emails, so no forgetting your password. You have no rights. It's like you don't even exist. If you publish material, I reserve the right to remove it, or use it myself.

Don't impersonate. Don't name someone involuntarily. You can lose everything if you cross the line, and no, I won't cancel your automatic payments first, so you'll have to do it the hard way. See how serious this sounds? That's how serious you're meant to take these.

×
Register


Required. 150 characters or fewer. Letters, digits and @/./+/-/_ only.
  • Your password can’t be too similar to your other personal information.
  • Your password must contain at least 8 characters.
  • Your password can’t be a commonly used password.
  • Your password can’t be entirely numeric.

Enter the same password as before, for verification.
Login

Grow A Dic
Define A Word
Make Space
Set Task
Mark Post
Apply Votestyle
Create Votes
(From: saved spaces)
Exclude Votes
Apply Dic
Exclude Dic

Click here to flash read.

arXiv:2404.16498v1 Announce Type: new
Abstract: Hysteresis in organic electrochemical transistors (OECT) is a basic effect in which the measured current depends on the voltage sweep direction and velocity. This phenomenon has an important impact on different aspects of the application of OECT, such as the switching time and the synaptic properties for neuromorphic applications. Here we address the combined ionic and electronic kinetic effects that cause the dominant hysteresis effects. We use a combination of tools consisting on basic analytical models, advanced 2D drift-diffusion simulation, and the experimental measurement of a Poly(3-hexylthiophene) (P3HT) OECT, working in an accumulation mode. We develop a general transmission line model considering drift electronic transport and ionic injection and diffusion from the electrolyte. We provide a basic classification of the transient response to a voltage pulse, according to the dominant ionic or electronic relaxation time, and the correspondent hysteresis effects of the transfer curves according to the general categories of inductive and capacitive hysteresis. These are basically related to the main control phenomenon, either the vertical diffusion of ions during doping and dedoping, or the equilibration of electronic current along the channel length.

Click here to read this post out
ID: 823364; Unique Viewers: 0
Unique Voters: 0
Total Votes: 0
Votes:
Latest Change: April 26, 2024, 7:32 a.m. Changes:
Dictionaries:
Words:
Spaces:
Views: 8
CC:
No creative common's license
Comments: