×
Well done. You've clicked the tower. This would actually achieve something if you had logged in first. Use the key for that. The name takes you home. This is where all the applicables sit. And you can't apply any changes to my site unless you are logged in.

Our policy is best summarized as "we don't care about _you_, we care about _them_", no emails, so no forgetting your password. You have no rights. It's like you don't even exist. If you publish material, I reserve the right to remove it, or use it myself.

Don't impersonate. Don't name someone involuntarily. You can lose everything if you cross the line, and no, I won't cancel your automatic payments first, so you'll have to do it the hard way. See how serious this sounds? That's how serious you're meant to take these.

×
Register


Required. 150 characters or fewer. Letters, digits and @/./+/-/_ only.
  • Your password can’t be too similar to your other personal information.
  • Your password must contain at least 8 characters.
  • Your password can’t be a commonly used password.
  • Your password can’t be entirely numeric.

Enter the same password as before, for verification.
Login

Grow A Dic
Define A Word
Make Space
Set Task
Mark Post
Apply Votestyle
Create Votes
(From: saved spaces)
Exclude Votes
Apply Dic
Exclude Dic

Click here to flash read.

arXiv:2404.16252v1 Announce Type: cross
Abstract: The study of dynamical systems on complex networks is of paramount importance in engineering, given that many natural and artificial systems find a natural embedding on discrete topologies. For instance, power grids, chemical reactors and the brain, to name a few, can be modeled through the network formalism by considering elementary units coupled via the links. In recent years, scholars have developed numerical and theoretical tools to study the stability of those coupled systems when subjected to perturbations. In such framework, it was found that asymmetric couplings enhance the possibilities for such systems to become unstable. Moreover, in this scenario the polynomials whose stability needs to be studied bear complex coefficients, which makes the analysis more difficult. In this work, we put to use a recent extension of the well-known Routh-Hurwitz stability criterion, allowing to treat the complex coefficient case. Then, using the Brusselator model as a case study, we discuss the stability conditions and the regions of parameters when the networked system remains stable.

Click here to read this post out
ID: 823390; Unique Viewers: 0
Unique Voters: 0
Total Votes: 0
Votes:
Latest Change: April 26, 2024, 7:32 a.m. Changes:
Dictionaries:
Words:
Spaces:
Views: 10
CC:
No creative common's license
Comments: