×
Well done. You've clicked the tower. This would actually achieve something if you had logged in first. Use the key for that. The name takes you home. This is where all the applicables sit. And you can't apply any changes to my site unless you are logged in.

Our policy is best summarized as "we don't care about _you_, we care about _them_", no emails, so no forgetting your password. You have no rights. It's like you don't even exist. If you publish material, I reserve the right to remove it, or use it myself.

Don't impersonate. Don't name someone involuntarily. You can lose everything if you cross the line, and no, I won't cancel your automatic payments first, so you'll have to do it the hard way. See how serious this sounds? That's how serious you're meant to take these.

×
Register


Required. 150 characters or fewer. Letters, digits and @/./+/-/_ only.
  • Your password can’t be too similar to your other personal information.
  • Your password must contain at least 8 characters.
  • Your password can’t be a commonly used password.
  • Your password can’t be entirely numeric.

Enter the same password as before, for verification.
Login

Grow A Dic
Define A Word
Make Space
Set Task
Mark Post
Apply Votestyle
Create Votes
(From: saved spaces)
Exclude Votes
Apply Dic
Exclude Dic

Click here to flash read.

arXiv:2404.16229v1 Announce Type: cross
Abstract: We present a theory of a two qubit gate with macroscopic singlet-triplet (ST) qubits in synthetic spin-one chains in InAsP quantum dot nanowires. The macroscopic topologically protected singlet-triplet qubits are built with two spin-half Haldane quasiparticles. The Haldane quasiparticles are hosted by synthetic spin-one chain realized in chains of InAsP quantum dots embedded in an InP nanowire, with four electrons each. The quantum dot nanowire is described by a Hubbard-Kanamori (HK) Hamiltonian derived from an interacting atomistic model. Using exact diagonalization and Matrix Product States (MPS) tools, we demonstrate that the low-energy behavior of the HK Hamiltonian is effectively captured by an antiferromagnetic spin-one chain Hamiltonian. Next we consider two macroscopic qubits and present a method for creating a tunable coupling between the two macroscopic qubits by inserting an intermediate control dot between the two chains. Finally, we propose and demonstrate two approaches for generating highly accurate two-ST qubit gates : (1) by controlling the length of each qubit, and (2) by employing different background magnetic fields for the two qubits.

Click here to read this post out
ID: 823532; Unique Viewers: 0
Unique Voters: 0
Total Votes: 0
Votes:
Latest Change: April 26, 2024, 7:32 a.m. Changes:
Dictionaries:
Words:
Spaces:
Views: 7
CC:
No creative common's license
Comments: