×
Well done. You've clicked the tower. This would actually achieve something if you had logged in first. Use the key for that. The name takes you home. This is where all the applicables sit. And you can't apply any changes to my site unless you are logged in.

Our policy is best summarized as "we don't care about _you_, we care about _them_", no emails, so no forgetting your password. You have no rights. It's like you don't even exist. If you publish material, I reserve the right to remove it, or use it myself.

Don't impersonate. Don't name someone involuntarily. You can lose everything if you cross the line, and no, I won't cancel your automatic payments first, so you'll have to do it the hard way. See how serious this sounds? That's how serious you're meant to take these.

×
Register


Required. 150 characters or fewer. Letters, digits and @/./+/-/_ only.
  • Your password can’t be too similar to your other personal information.
  • Your password must contain at least 8 characters.
  • Your password can’t be a commonly used password.
  • Your password can’t be entirely numeric.

Enter the same password as before, for verification.
Login

Grow A Dic
Define A Word
Make Space
Set Task
Mark Post
Apply Votestyle
Create Votes
(From: saved spaces)
Exclude Votes
Apply Dic
Exclude Dic

Click here to flash read.

arXiv:2404.16470v1 Announce Type: cross
Abstract: We undertake a theoretical study of a finite-time quantum Otto engine cycle driven by inter-particle interactions in a weakly interacting one-dimensional Bose gas in the quasicondensate regime. Utilizing a $c$-field approach, we simulate the entire Otto cycle, i.e. the two work strokes and the two equilibration strokes. More specifically, the interaction-induced work strokes are modelled by treating the working fluid as an isolated quantum many-body system undergoing unitary evolution. The equilibration strokes, on the other hand, are modelled by treating the working fluid as an open quantum system tunnel-coupled to another quasicondensate which acts as either the hot or cold reservoir, albeit of finite size. We find that, unlike a uniform 1D Bose gas, a harmonically trapped quasicondensate cannot operate purely as a \emph{heat} engine; instead, the engine operation is enabled by additional \emph{chemical} work performed on the working fluid, facilitated by the inflow of particles from the hot reservoir. The microscopic treatment of dynamics during equilibration strokes enables us to evaluate the characteristic operational time scales of this Otto chemical engine, crucial for characterizing its power output, without any \emph{ad hoc} assumptions about typical thermalization timescales. We analyse the performance and quantify the figures of merit of the proposed Otto chemical engine, finding that it offers a favourable trade-off between efficiency and power output, particularly when the interaction-induced work strokes are implemented via a sudden quench. We further demonstrate that in the sudden quench regime, the engine operates with an efficiency close to the near-adiabatic (near maximum efficiency) limit, while concurrently achieving maximum power output.

Click here to read this post out
ID: 823535; Unique Viewers: 0
Unique Voters: 0
Total Votes: 0
Votes:
Latest Change: April 26, 2024, 7:32 a.m. Changes:
Dictionaries:
Words:
Spaces:
Views: 7
CC:
No creative common's license
Comments: