×
Well done. You've clicked the tower. This would actually achieve something if you had logged in first. Use the key for that. The name takes you home. This is where all the applicables sit. And you can't apply any changes to my site unless you are logged in.

Our policy is best summarized as "we don't care about _you_, we care about _them_", no emails, so no forgetting your password. You have no rights. It's like you don't even exist. If you publish material, I reserve the right to remove it, or use it myself.

Don't impersonate. Don't name someone involuntarily. You can lose everything if you cross the line, and no, I won't cancel your automatic payments first, so you'll have to do it the hard way. See how serious this sounds? That's how serious you're meant to take these.

×
Register


Required. 150 characters or fewer. Letters, digits and @/./+/-/_ only.
  • Your password can’t be too similar to your other personal information.
  • Your password must contain at least 8 characters.
  • Your password can’t be a commonly used password.
  • Your password can’t be entirely numeric.

Enter the same password as before, for verification.
Login

Grow A Dic
Define A Word
Make Space
Set Task
Mark Post
Apply Votestyle
Create Votes
(From: saved spaces)
Exclude Votes
Apply Dic
Exclude Dic

Click here to flash read.

arXiv:2304.06768v2 Announce Type: replace
Abstract: Machine learning algorithms, both in their classical and quantum versions, heavily rely on optimization algorithms based on gradients, such as gradient descent and alike. The overall performance is dependent on the appearance of local minima and barren plateaus, which slow-down calculations and lead to non-optimal solutions. In practice, this results in dramatic computational and energy costs for AI applications. In this paper we introduce a generic strategy to accelerate and improve the overall performance of such methods, allowing to alleviate the effect of barren plateaus and local minima. Our method is based on coordinate transformations, somehow similar to variational rotations, adding extra directions in parameter space that depend on the cost function itself, and which allow to explore the configuration landscape more efficiently. The validity of our method is benchmarked by boosting a number of quantum machine learning algorithms, getting a very significant improvement in their performance.

Click here to read this post out
ID: 823544; Unique Viewers: 0
Unique Voters: 0
Total Votes: 0
Votes:
Latest Change: April 26, 2024, 7:32 a.m. Changes:
Dictionaries:
Words:
Spaces:
Views: 6
CC:
No creative common's license
Comments: