×
Well done. You've clicked the tower. This would actually achieve something if you had logged in first. Use the key for that. The name takes you home. This is where all the applicables sit. And you can't apply any changes to my site unless you are logged in.

Our policy is best summarized as "we don't care about _you_, we care about _them_", no emails, so no forgetting your password. You have no rights. It's like you don't even exist. If you publish material, I reserve the right to remove it, or use it myself.

Don't impersonate. Don't name someone involuntarily. You can lose everything if you cross the line, and no, I won't cancel your automatic payments first, so you'll have to do it the hard way. See how serious this sounds? That's how serious you're meant to take these.

×
Register


Required. 150 characters or fewer. Letters, digits and @/./+/-/_ only.
  • Your password can’t be too similar to your other personal information.
  • Your password must contain at least 8 characters.
  • Your password can’t be a commonly used password.
  • Your password can’t be entirely numeric.

Enter the same password as before, for verification.
Login

Grow A Dic
Define A Word
Make Space
Set Task
Mark Post
Apply Votestyle
Create Votes
(From: saved spaces)
Exclude Votes
Apply Dic
Exclude Dic

Click here to flash read.

arXiv:2403.01150v3 Announce Type: replace
Abstract: Reference [1] introduces a novel closed-form quaternion estimator from two vector observations. The simplicity of the estimator sometimes yields singular expressions, the current annotation provides the simple rotation schemes for four singular cases. The estimator enables clear physical insights and a closed-form expression for the bias as a function of the quaternion error covariance matrix. The latter could be approximated up to second order with respect to the underlying measurement noise assuming arbitrary probability distribution. This note relaxes the second-order assumption, provides an expression for the error covariance that is exact to the fourth order, and a comprehensive derivation of the individual components of the quaternion additive error covariance matrix, under the assumption of Gaussian distribution. It not only provides increased accuracy but also alleviates issues related to singularity.

Click here to read this post out
ID: 823616; Unique Viewers: 0
Unique Voters: 0
Total Votes: 0
Votes:
Latest Change: April 26, 2024, 7:33 a.m. Changes:
Dictionaries:
Words:
Spaces:
Views: 7
CC:
No creative common's license
Comments: