×
Well done. You've clicked the tower. This would actually achieve something if you had logged in first. Use the key for that. The name takes you home. This is where all the applicables sit. And you can't apply any changes to my site unless you are logged in.

Our policy is best summarized as "we don't care about _you_, we care about _them_", no emails, so no forgetting your password. You have no rights. It's like you don't even exist. If you publish material, I reserve the right to remove it, or use it myself.

Don't impersonate. Don't name someone involuntarily. You can lose everything if you cross the line, and no, I won't cancel your automatic payments first, so you'll have to do it the hard way. See how serious this sounds? That's how serious you're meant to take these.

×
Register


Required. 150 characters or fewer. Letters, digits and @/./+/-/_ only.
  • Your password can’t be too similar to your other personal information.
  • Your password must contain at least 8 characters.
  • Your password can’t be a commonly used password.
  • Your password can’t be entirely numeric.

Enter the same password as before, for verification.
Login

Grow A Dic
Define A Word
Make Space
Set Task
Mark Post
Apply Votestyle
Create Votes
(From: saved spaces)
Exclude Votes
Apply Dic
Exclude Dic

Click here to flash read.

arXiv:2405.02952v1 Announce Type: new
Abstract: Scientific computing is an essential tool for scientific discovery and engineering design, and its computational cost is always a main concern in practice. To accelerate scientific computing, it is a promising approach to use machine learning (especially meta-learning) techniques for selecting hyperparameters of traditional numerical methods. There have been numerous proposals to this direction, but many of them require automatic-differentiable numerical methods. However, in reality, many practical applications still depend on well-established but non-automatic-differentiable legacy codes, which prevents practitioners from applying the state-of-the-art research to their own problems. To resolve this problem, we propose a non-intrusive methodology with a novel gradient estimation technique to combine machine learning and legacy numerical codes without any modification. We theoretically and numerically show the advantage of the proposed method over other baselines and present applications of accelerating established non-automatic-differentiable numerical solvers implemented in PETSc, a widely used open-source numerical software library.

Click here to read this post out
ID: 838779; Unique Viewers: 0
Unique Voters: 0
Total Votes: 0
Votes:
Latest Change: May 7, 2024, 7:31 a.m. Changes:
Dictionaries:
Words:
Spaces:
Views: 7
CC:
No creative common's license
Comments: