×
Well done. You've clicked the tower. This would actually achieve something if you had logged in first. Use the key for that. The name takes you home. This is where all the applicables sit. And you can't apply any changes to my site unless you are logged in.

Our policy is best summarized as "we don't care about _you_, we care about _them_", no emails, so no forgetting your password. You have no rights. It's like you don't even exist. If you publish material, I reserve the right to remove it, or use it myself.

Don't impersonate. Don't name someone involuntarily. You can lose everything if you cross the line, and no, I won't cancel your automatic payments first, so you'll have to do it the hard way. See how serious this sounds? That's how serious you're meant to take these.

×
Register


Required. 150 characters or fewer. Letters, digits and @/./+/-/_ only.
  • Your password can’t be too similar to your other personal information.
  • Your password must contain at least 8 characters.
  • Your password can’t be a commonly used password.
  • Your password can’t be entirely numeric.

Enter the same password as before, for verification.
Login

Grow A Dic
Define A Word
Make Space
Set Task
Mark Post
Apply Votestyle
Create Votes
(From: saved spaces)
Exclude Votes
Apply Dic
Exclude Dic

Click here to flash read.

arXiv:2405.02989v1 Announce Type: new
Abstract: There is an upward trend of deploying distributed energy resource management systems (DERMS) to control modern power grids. However, DERMS controller communication lines are vulnerable to cyberattacks that could potentially impact operational reliability. While a data-driven intrusion detection system (IDS) can potentially thwart attacks during deployment, also known as the evasion attack, the training of the detection algorithm may be corrupted by adversarial data injected into the database, also known as the poisoning attack. In this paper, we propose the first framework of IDS that is robust against joint poisoning and evasion attacks. We formulate the defense mechanism as a bilevel optimization, where the inner and outer levels deal with attacks that occur during training time and testing time, respectively. We verify the robustness of our method on the IEEE-13 bus feeder model against a diverse set of poisoning and evasion attack scenarios. The results indicate that our proposed method outperforms the baseline technique in terms of accuracy, precision, and recall for intrusion detection.

Click here to read this post out
ID: 838802; Unique Viewers: 0
Unique Voters: 0
Total Votes: 0
Votes:
Latest Change: May 7, 2024, 7:31 a.m. Changes:
Dictionaries:
Words:
Spaces:
Views: 6
CC:
No creative common's license
Comments: