×
Well done. You've clicked the tower. This would actually achieve something if you had logged in first. Use the key for that. The name takes you home. This is where all the applicables sit. And you can't apply any changes to my site unless you are logged in.

Our policy is best summarized as "we don't care about _you_, we care about _them_", no emails, so no forgetting your password. You have no rights. It's like you don't even exist. If you publish material, I reserve the right to remove it, or use it myself.

Don't impersonate. Don't name someone involuntarily. You can lose everything if you cross the line, and no, I won't cancel your automatic payments first, so you'll have to do it the hard way. See how serious this sounds? That's how serious you're meant to take these.

×
Register


Required. 150 characters or fewer. Letters, digits and @/./+/-/_ only.
  • Your password can’t be too similar to your other personal information.
  • Your password must contain at least 8 characters.
  • Your password can’t be a commonly used password.
  • Your password can’t be entirely numeric.

Enter the same password as before, for verification.
Login

Grow A Dic
Define A Word
Make Space
Set Task
Mark Post
Apply Votestyle
Create Votes
(From: saved spaces)
Exclude Votes
Apply Dic
Exclude Dic

Click here to flash read.

arXiv:2405.03009v1 Announce Type: new
Abstract: Malware detection is a constant challenge in cybersecurity due to the rapid development of new attack techniques. Traditional signature-based approaches struggle to keep pace with the sheer volume of malware samples. Machine learning offers a promising solution, but faces issues of generalization to unseen samples and a lack of explanation for the instances identified as malware. However, human-understandable explanations are especially important in security-critical fields, where understanding model decisions is crucial for trust and legal compliance. While deep learning models excel at malware detection, their black-box nature hinders explainability. Conversely, interpretable models often fall short in performance. To bridge this gap in this application domain, we propose the use of Logic Explained Networks (LENs), which are a recently proposed class of interpretable neural networks providing explanations in the form of First-Order Logic (FOL) rules. This paper extends the application of LENs to the complex domain of malware detection, specifically using the large-scale EMBER dataset. In the experimental results we show that LENs achieve robustness that exceeds traditional interpretable methods and that are rivaling black-box models. Moreover, we introduce a tailored version of LENs that is shown to generate logic explanations with higher fidelity with respect to the model's predictions.

Click here to read this post out
ID: 838812; Unique Viewers: 0
Unique Voters: 0
Total Votes: 0
Votes:
Latest Change: May 7, 2024, 7:31 a.m. Changes:
Dictionaries:
Words:
Spaces:
Views: 6
CC:
No creative common's license
Comments: