×
Well done. You've clicked the tower. This would actually achieve something if you had logged in first. Use the key for that. The name takes you home. This is where all the applicables sit. And you can't apply any changes to my site unless you are logged in.

Our policy is best summarized as "we don't care about _you_, we care about _them_", no emails, so no forgetting your password. You have no rights. It's like you don't even exist. If you publish material, I reserve the right to remove it, or use it myself.

Don't impersonate. Don't name someone involuntarily. You can lose everything if you cross the line, and no, I won't cancel your automatic payments first, so you'll have to do it the hard way. See how serious this sounds? That's how serious you're meant to take these.

×
Register


Required. 150 characters or fewer. Letters, digits and @/./+/-/_ only.
  • Your password can’t be too similar to your other personal information.
  • Your password must contain at least 8 characters.
  • Your password can’t be a commonly used password.
  • Your password can’t be entirely numeric.

Enter the same password as before, for verification.
Login

Grow A Dic
Define A Word
Make Space
Set Task
Mark Post
Apply Votestyle
Create Votes
(From: saved spaces)
Exclude Votes
Apply Dic
Exclude Dic

Click here to flash read.

arXiv:2405.02537v1 Announce Type: new
Abstract: This paper proposes a new robust data-driven control method for linear systems with bounded disturbances, where the system model and disturbances are unknown. Due to disturbances, accurately determining the true system becomes challenging using the collected dataset. Therefore, instead of designing controllers directly for the unknown true system, an available approach is to design controllers for all systems compatible with the dataset. To overcome the limitations of using a single dataset and benefit from collecting more data, multiple datasets are employed in this paper. Furthermore, a new iterative method is developed to address the challenges of using multiple datasets. Based on this method, this paper develops an offline and online robust data-driven iterative control method, respectively. Compared to the existing robust data-driven controller method, both proposed control methods iteratively utilize multiple datasets in the controller design process. This allows for the incorporation of numerous datasets, potentially reducing the conservativeness of the designed controller. Particularly, the online controller is iteratively designed by continuously incorporating online collected data into the historical data to construct new datasets. Lastly, the effectiveness of the proposed methods is demonstrated using a batch reactor.

Click here to read this post out
ID: 839677; Unique Viewers: 0
Unique Voters: 0
Total Votes: 0
Votes:
Latest Change: May 7, 2024, 7:32 a.m. Changes:
Dictionaries:
Words:
Spaces:
Views: 8
CC:
No creative common's license
Comments: