×
Well done. You've clicked the tower. This would actually achieve something if you had logged in first. Use the key for that. The name takes you home. This is where all the applicables sit. And you can't apply any changes to my site unless you are logged in.

Our policy is best summarized as "we don't care about _you_, we care about _them_", no emails, so no forgetting your password. You have no rights. It's like you don't even exist. If you publish material, I reserve the right to remove it, or use it myself.

Don't impersonate. Don't name someone involuntarily. You can lose everything if you cross the line, and no, I won't cancel your automatic payments first, so you'll have to do it the hard way. See how serious this sounds? That's how serious you're meant to take these.

×
Register


Required. 150 characters or fewer. Letters, digits and @/./+/-/_ only.
  • Your password can’t be too similar to your other personal information.
  • Your password must contain at least 8 characters.
  • Your password can’t be a commonly used password.
  • Your password can’t be entirely numeric.

Enter the same password as before, for verification.
Login

Grow A Dic
Define A Word
Make Space
Set Task
Mark Post
Apply Votestyle
Create Votes
(From: saved spaces)
Exclude Votes
Apply Dic
Exclude Dic

Click here to flash read.

arXiv:2405.03471v1 Announce Type: new
Abstract: In this work, we develop a general perturbative procedure to find the off-equatorial plane deflections in the weak deflection limit in general stationary and axisymmetric spacetimes satisfying some common variable separation conditions. Deflections of both null and timelike rays with the finite distance effect of the source and detector taken into account are obtained as dual series of $M/r_0$ and $r_0/r_{s,d}$. These deflections allow a set of exact gravitational lensing equations from which the images' apparent angular positions are solved. The method and general results are then applied to the Kerr-Newmann, Kerr-Sen, and rotating Simpson-Visser spacetimes to study the effect of the spin and characteristic (effective) charge of the spacetimes and the source altitude on the deflection angles and image apparent angles. It is found that in general, both the spacetime spin and charge only affect the deflections from the second non-trivial order, while the source altitude influences the deflection from the leading order. Because of these, it is found that in gravitational lensing in realistic situations, it is hard to measure the effects of the spacetime spin and charge from the images' apparent locations. We also presented the off-equatorial deflections in the rotating Bardeen, Hayward, Ghosh, and Tinchev black hole spacetimes.

Click here to read this post out
ID: 839833; Unique Viewers: 0
Unique Voters: 0
Total Votes: 0
Votes:
Latest Change: May 7, 2024, 7:32 a.m. Changes:
Dictionaries:
Words:
Spaces:
Views: 8
CC:
No creative common's license
Comments: