×
Well done. You've clicked the tower. This would actually achieve something if you had logged in first. Use the key for that. The name takes you home. This is where all the applicables sit. And you can't apply any changes to my site unless you are logged in.

Our policy is best summarized as "we don't care about _you_, we care about _them_", no emails, so no forgetting your password. You have no rights. It's like you don't even exist. If you publish material, I reserve the right to remove it, or use it myself.

Don't impersonate. Don't name someone involuntarily. You can lose everything if you cross the line, and no, I won't cancel your automatic payments first, so you'll have to do it the hard way. See how serious this sounds? That's how serious you're meant to take these.

×
Register


Required. 150 characters or fewer. Letters, digits and @/./+/-/_ only.
  • Your password can’t be too similar to your other personal information.
  • Your password must contain at least 8 characters.
  • Your password can’t be a commonly used password.
  • Your password can’t be entirely numeric.

Enter the same password as before, for verification.
Login

Grow A Dic
Define A Word
Make Space
Set Task
Mark Post
Apply Votestyle
Create Votes
(From: saved spaces)
Exclude Votes
Apply Dic
Exclude Dic

Click here to flash read.

arXiv:2404.17361v2 Announce Type: replace
Abstract: Pressure-driven bubble dynamics is a major topic of current research in fluid dynamics, driven by innovative medical therapies, sonochemistry, material treatments, and geophysical exploration. First proposed in 1942, the Kirkwood-Bethe hypothesis provides a simple means to close the equations that govern pressure-driven bubble dynamics as well as the resulting flow field and acoustic emissions in spherical symmetry. The models derived from the Kirkwood-Bethe hypothesis can be solved using standard numerical integration methods at a fraction of the computational cost required for fully resolved simulations. Here, the theoretical foundation of the Kirkwood-Bethe hypothesis and contemporary models derived from it are gathered and reviewed, as well as generalized to account for spherically symmetric, cylindrically symmetric, and planar one-dimensional domains. In addition, the underpinning assumptions are clarified and new results that scrutinize the predictive capabilities of the Kirkwood-Bethe hypothesis with respect to the complex acoustic impedance experienced by curved acoustic waves and the formation of shock waves are presented. Although the Kirkwood-Bethe hypothesis is built upon simplifying assumptions and lacks some basic acoustic properties, models derived from it are able to provide accurate predictions under the specific conditions associated with pressure-driven bubble dynamics, cavitation and underwater explosions.

Click here to read this post out
ID: 840934; Unique Viewers: 0
Unique Voters: 0
Total Votes: 0
Votes:
Latest Change: May 7, 2024, 7:34 a.m. Changes:
Dictionaries:
Words:
Spaces:
Views: 8
CC:
No creative common's license
Comments: