×
Well done. You've clicked the tower. This would actually achieve something if you had logged in first. Use the key for that. The name takes you home. This is where all the applicables sit. And you can't apply any changes to my site unless you are logged in.

Our policy is best summarized as "we don't care about _you_, we care about _them_", no emails, so no forgetting your password. You have no rights. It's like you don't even exist. If you publish material, I reserve the right to remove it, or use it myself.

Don't impersonate. Don't name someone involuntarily. You can lose everything if you cross the line, and no, I won't cancel your automatic payments first, so you'll have to do it the hard way. See how serious this sounds? That's how serious you're meant to take these.

×
Register


Required. 150 characters or fewer. Letters, digits and @/./+/-/_ only.
  • Your password can’t be too similar to your other personal information.
  • Your password must contain at least 8 characters.
  • Your password can’t be a commonly used password.
  • Your password can’t be entirely numeric.

Enter the same password as before, for verification.
Login

Grow A Dic
Define A Word
Make Space
Set Task
Mark Post
Apply Votestyle
Create Votes
(From: saved spaces)
Exclude Votes
Apply Dic
Exclude Dic

Click here to flash read.

arXiv:2309.00732v2 Announce Type: replace
Abstract: Koopman operators and transfer operators represent dynamical systems through their induced linear action on vector spaces of observables, enabling the use of operator-theoretic techniques to analyze nonlinear dynamics in state space. The extraction of approximate Koopman or transfer operator eigenfunctions (and the associated eigenvalues) from an unknown system is nontrivial, particularly if the system has mixed or continuous spectrum. In this paper, we describe a spectrally accurate approach to approximate the Koopman operator on $L^2$ for measure-preserving, continuous-time systems via a ``compactification'' of the resolvent of the generator. This approach employs kernel integral operators to approximate the skew-adjoint Koopman generator by a family of skew-adjoint operators with compact resolvent, whose spectral measures converge in a suitable asymptotic limit, and whose eigenfunctions are approximately periodic. Moreover, we develop a data-driven formulation of our approach, utilizing data sampled on dynamical trajectories and associated dictionaries of kernel eigenfunctions for operator approximation. The data-driven scheme is shown to converge in the limit of large training data under natural assumptions on the dynamical system and observation modality. We explore applications of this technique to dynamical systems on tori with pure point spectra and the Lorenz 63 system as an example with mixing dynamics.

Click here to read this post out
ID: 842939; Unique Viewers: 0
Unique Voters: 0
Total Votes: 0
Votes:
Latest Change: May 8, 2024, 7:32 a.m. Changes:
Dictionaries:
Words:
Spaces:
Views: 8
CC:
No creative common's license
Comments: