×
Well done. You've clicked the tower. This would actually achieve something if you had logged in first. Use the key for that. The name takes you home. This is where all the applicables sit. And you can't apply any changes to my site unless you are logged in.

Our policy is best summarized as "we don't care about _you_, we care about _them_", no emails, so no forgetting your password. You have no rights. It's like you don't even exist. If you publish material, I reserve the right to remove it, or use it myself.

Don't impersonate. Don't name someone involuntarily. You can lose everything if you cross the line, and no, I won't cancel your automatic payments first, so you'll have to do it the hard way. See how serious this sounds? That's how serious you're meant to take these.

×
Register


Required. 150 characters or fewer. Letters, digits and @/./+/-/_ only.
  • Your password can’t be too similar to your other personal information.
  • Your password must contain at least 8 characters.
  • Your password can’t be a commonly used password.
  • Your password can’t be entirely numeric.

Enter the same password as before, for verification.
Login

Grow A Dic
Define A Word
Make Space
Set Task
Mark Post
Apply Votestyle
Create Votes
(From: saved spaces)
Exclude Votes
Apply Dic
Exclude Dic

Click here to flash read.

arXiv:2304.00214v2 Announce Type: replace
Abstract: We present a high-dynamic-range vector atomic magnetometer based on applying a fast-rotating magnetic field to a pulsed $^{87}$Rb scalar atomic magnetometer. This method enables simultaneous measurements of the total magnetic field and two polar angles relative to the plane of magnetic field rotation. Using two channels in a gradiometer mode, it provides simultaneous measurements of the total field gradient with a sensitivity of 50 $\mathrm{fT/\sqrt{Hz}}$ (1 part per billion), as well as two polar angles with resolutions of 8 $\mathrm{nrad/\sqrt{Hz}}$ at 50 $\mu$T Earth field strength. The noise spectrums of these measurements are flat down to 1 Hz and 0.1 Hz, respectively. Crucially, this approach avoids several metrological difficulties associated with vector magnetometers and gradiometers. We detail the fundamental, systematic, and practical limits of such vector magnetometers. Notably, we provide a comprehensive study of the systematic effects of vector atomic magnetometers. We introduce a new concept of dynamic heading error and investigate several other systematic effects. A unique cosine-altering rotating field modulation is proposed to cancel out these systematics. Additionally, we derive fundamental limits on the sensitivity of such sensors and demonstrate that the vector sensitivity of the sensor can approach its scalar sensitivity while retaining the accuracy and metrological advantages of scalar sensors. This high-dynamic-range vector magnetometer, with ultrahigh resolution and inherent calibration, is suitable for a wide array of applications.

Click here to read this post out
ID: 843319; Unique Viewers: 0
Unique Voters: 0
Total Votes: 0
Votes:
Latest Change: May 8, 2024, 7:32 a.m. Changes:
Dictionaries:
Words:
Spaces:
Views: 6
CC:
No creative common's license
Comments: