×
Well done. You've clicked the tower. This would actually achieve something if you had logged in first. Use the key for that. The name takes you home. This is where all the applicables sit. And you can't apply any changes to my site unless you are logged in.

Our policy is best summarized as "we don't care about _you_, we care about _them_", no emails, so no forgetting your password. You have no rights. It's like you don't even exist. If you publish material, I reserve the right to remove it, or use it myself.

Don't impersonate. Don't name someone involuntarily. You can lose everything if you cross the line, and no, I won't cancel your automatic payments first, so you'll have to do it the hard way. See how serious this sounds? That's how serious you're meant to take these.

×
Register


Required. 150 characters or fewer. Letters, digits and @/./+/-/_ only.
  • Your password can’t be too similar to your other personal information.
  • Your password must contain at least 8 characters.
  • Your password can’t be a commonly used password.
  • Your password can’t be entirely numeric.

Enter the same password as before, for verification.
Login

Grow A Dic
Define A Word
Make Space
Set Task
Mark Post
Apply Votestyle
Create Votes
(From: saved spaces)
Exclude Votes
Apply Dic
Exclude Dic

Click here to flash read.

arXiv:2306.07330v2 Announce Type: replace
Abstract: Time-translation symmetry breaking is a mechanism for the emergence of non-stationary many-body phases, so-called time-crystals, in Markovian open quantum systems. Dynamical aspects of time-crystals have been extensively explored over the recent years. However, much less is known about their thermodynamic properties, also due to the intrinsic nonequilibrium nature of these phases. Here, we consider the paradigmatic boundary time-crystal system, in a finite-temperature environment, and demonstrate the persistence of the time-crystalline phase at any temperature. Furthermore, we analyze thermodynamic aspects of the model investigating, in particular, heat currents, power exchange and irreversible entropy production. Our work sheds light on the thermodynamic cost of sustaining nonequilibrium time-crystalline phases and provides a framework for characterizing time-crystals as possible resources for, e.g., quantum sensing. Our results may be verified in experiments, for example with trapped ions or superconducting circuits, since we connect thermodynamic quantities with mean value and covariance of collective (magnetization) operators.

Click here to read this post out
ID: 843322; Unique Viewers: 0
Unique Voters: 0
Total Votes: 0
Votes:
Latest Change: May 8, 2024, 7:32 a.m. Changes:
Dictionaries:
Words:
Spaces:
Views: 5
CC:
No creative common's license
Comments: