×
Well done. You've clicked the tower. This would actually achieve something if you had logged in first. Use the key for that. The name takes you home. This is where all the applicables sit. And you can't apply any changes to my site unless you are logged in.

Our policy is best summarized as "we don't care about _you_, we care about _them_", no emails, so no forgetting your password. You have no rights. It's like you don't even exist. If you publish material, I reserve the right to remove it, or use it myself.

Don't impersonate. Don't name someone involuntarily. You can lose everything if you cross the line, and no, I won't cancel your automatic payments first, so you'll have to do it the hard way. See how serious this sounds? That's how serious you're meant to take these.

×
Register


Required. 150 characters or fewer. Letters, digits and @/./+/-/_ only.
  • Your password can’t be too similar to your other personal information.
  • Your password must contain at least 8 characters.
  • Your password can’t be a commonly used password.
  • Your password can’t be entirely numeric.

Enter the same password as before, for verification.
Login

Grow A Dic
Define A Word
Make Space
Set Task
Mark Post
Apply Votestyle
Create Votes
(From: saved spaces)
Exclude Votes
Apply Dic
Exclude Dic

Click here to flash read.

arXiv:2307.12702v3 Announce Type: replace
Abstract: We present a classical algorithm for simulating universal quantum circuits composed of "free" nearest-neighbour matchgates or equivalently fermionic-linear-optical (FLO) gates, and "resourceful" non-Gaussian gates. We achieve the promotion of the efficiently simulable FLO subtheory to universal quantum computation by gadgetizing controlled phase gates with arbitrary phases employing non-Gaussian resource states. Our key contribution is the development of a novel phase-sensitive algorithm for simulating FLO circuits. This allows us to decompose the resource states arising from gadgetization into free states at the level of statevectors rather than density matrices. The runtime cost of our algorithm for estimating the Born-rule probability of a given quantum circuit scales polynomially in all circuit parameters, except for a linear dependence on the newly introduced FLO extent, which scales exponentially with the number of controlled-phase gates. More precisely, as a result of finding optimal decompositions of relevant resource states, the runtime doubles for every maximally resourceful (e.g., swap or CZ) gate added. Crucially, this cost compares very favourably with the best known prior algorithm, where each swap gate increases the simulation cost by a factor of approximately 9. For a quantum circuit containing arbitrary FLO unitaries and $k$ controlled-Z gates, we obtain an exponential improvement $O(4.5^k)$ over the prior state-of-the-art.

Click here to read this post out
ID: 843325; Unique Viewers: 0
Unique Voters: 0
Total Votes: 0
Votes:
Latest Change: May 8, 2024, 7:32 a.m. Changes:
Dictionaries:
Words:
Spaces:
Views: 7
CC:
No creative common's license
Comments: