×
Well done. You've clicked the tower. This would actually achieve something if you had logged in first. Use the key for that. The name takes you home. This is where all the applicables sit. And you can't apply any changes to my site unless you are logged in.

Our policy is best summarized as "we don't care about _you_, we care about _them_", no emails, so no forgetting your password. You have no rights. It's like you don't even exist. If you publish material, I reserve the right to remove it, or use it myself.

Don't impersonate. Don't name someone involuntarily. You can lose everything if you cross the line, and no, I won't cancel your automatic payments first, so you'll have to do it the hard way. See how serious this sounds? That's how serious you're meant to take these.

×
Register


Required. 150 characters or fewer. Letters, digits and @/./+/-/_ only.
  • Your password can’t be too similar to your other personal information.
  • Your password must contain at least 8 characters.
  • Your password can’t be a commonly used password.
  • Your password can’t be entirely numeric.

Enter the same password as before, for verification.
Login

Grow A Dic
Define A Word
Make Space
Set Task
Mark Post
Apply Votestyle
Create Votes
(From: saved spaces)
Exclude Votes
Apply Dic
Exclude Dic

Click here to flash read.

arXiv:2403.04432v2 Announce Type: replace
Abstract: Quantum interferences based on beam splitting are widely used for entanglement. However, the quantitative description of the entanglement and wavepacket shaping facilitated by this entanglement remain unexplored. Here we analytically study the interference of two photons with different temporal shapes through a beam splitter (BS), then propose its application in temporal entanglement and shaping of photons. The temporal entanglement described by Von Neumann entropy is determined by the splitting ratio of BS and temporal indistinguishability of input photons. Maximum entanglement can be achieved with a 50/50 BS configuration. Then, detecting one of the entangled photons at a specific time enables the probabilistic shaping of the other photon. This process can shape the exponentially decaying (ED) wavepacket into the ED sine shapes, which can be further shaped into Gaussian shapes with fidelity exceeding 99\%. The temporal entanglement and shaping of photons based on interference may solve the shape mismatch issues in large-scale optical quantum networks.

Click here to read this post out
ID: 843337; Unique Viewers: 0
Unique Voters: 0
Total Votes: 0
Votes:
Latest Change: May 8, 2024, 7:32 a.m. Changes:
Dictionaries:
Words:
Spaces:
Views: 6
CC:
No creative common's license
Comments: