×
Well done. You've clicked the tower. This would actually achieve something if you had logged in first. Use the key for that. The name takes you home. This is where all the applicables sit. And you can't apply any changes to my site unless you are logged in.

Our policy is best summarized as "we don't care about _you_, we care about _them_", no emails, so no forgetting your password. You have no rights. It's like you don't even exist. If you publish material, I reserve the right to remove it, or use it myself.

Don't impersonate. Don't name someone involuntarily. You can lose everything if you cross the line, and no, I won't cancel your automatic payments first, so you'll have to do it the hard way. See how serious this sounds? That's how serious you're meant to take these.

×
Register


Required. 150 characters or fewer. Letters, digits and @/./+/-/_ only.
  • Your password can’t be too similar to your other personal information.
  • Your password must contain at least 8 characters.
  • Your password can’t be a commonly used password.
  • Your password can’t be entirely numeric.

Enter the same password as before, for verification.
Login

Grow A Dic
Define A Word
Make Space
Set Task
Mark Post
Apply Votestyle
Create Votes
(From: saved spaces)
Exclude Votes
Apply Dic
Exclude Dic

Click here to flash read.

arXiv:2404.06861v2 Announce Type: replace
Abstract: Achieving dense connectivities is a challenge for most quantum computing platforms today, and a particularly crucial one for the case of quantum annealing applications. In this context, we present a scalable architecture for quantum annealers defined on a graph of degree $d=3$ and containing exclusively 2-local interactions to realize an all-to-all connected Ising model. This amounts to an efficient braiding of logical chains of qubits which can be derived from a description of the problem in terms of triangles. We also devise strategies to address the challenges of scalable architectures, such as the faster shrinking of the gap due to the larger physical Hilbert space, based on driver Hamiltonians more suited to the symmetries of the logical solution space. We thus show an alternative route to scale up devices dedicated to classical optimization tasks within the quantum annealing paradigm.

Click here to read this post out
ID: 843340; Unique Viewers: 0
Unique Voters: 0
Total Votes: 0
Votes:
Latest Change: May 8, 2024, 7:32 a.m. Changes:
Dictionaries:
Words:
Spaces:
Views: 7
CC:
No creative common's license
Comments: