×
Well done. You've clicked the tower. This would actually achieve something if you had logged in first. Use the key for that. The name takes you home. This is where all the applicables sit. And you can't apply any changes to my site unless you are logged in.

Our policy is best summarized as "we don't care about _you_, we care about _them_", no emails, so no forgetting your password. You have no rights. It's like you don't even exist. If you publish material, I reserve the right to remove it, or use it myself.

Don't impersonate. Don't name someone involuntarily. You can lose everything if you cross the line, and no, I won't cancel your automatic payments first, so you'll have to do it the hard way. See how serious this sounds? That's how serious you're meant to take these.

×
Register


Required. 150 characters or fewer. Letters, digits and @/./+/-/_ only.
  • Your password can’t be too similar to your other personal information.
  • Your password must contain at least 8 characters.
  • Your password can’t be a commonly used password.
  • Your password can’t be entirely numeric.

Enter the same password as before, for verification.
Login

Grow A Dic
Define A Word
Make Space
Set Task
Mark Post
Apply Votestyle
Create Votes
(From: saved spaces)
Exclude Votes
Apply Dic
Exclude Dic

Click here to flash read.

arXiv:2404.18586v2 Announce Type: replace
Abstract: Gaussian quantum information processing with continuous-variable (CV) quantum information carriers holds significant promise for applications in quantum communication and quantum internet. However, applying Gaussian state distillation and quantum error correction (QEC) faces limitations imposed by no-go results concerning local Gaussian unitary operations and classical communications. This paper introduces a Gaussian QEC protocol that relies solely on local Gaussian resources. A pivotal component of our approach is CV gate teleportation using entangled Gaussian states, which facilitates the implementation of the partial transpose operation on a quantum channel. Consequently, we can efficiently construct a two-mode noise-polarized channel from two noisy Gaussian channels. Furthermore, this QEC protocol naturally extends to a nonlocal Gaussian state distillation protocol.

Click here to read this post out
ID: 843342; Unique Viewers: 0
Unique Voters: 0
Total Votes: 0
Votes:
Latest Change: May 8, 2024, 7:32 a.m. Changes:
Dictionaries:
Words:
Spaces:
Views: 8
CC:
No creative common's license
Comments: