×
Well done. You've clicked the tower. This would actually achieve something if you had logged in first. Use the key for that. The name takes you home. This is where all the applicables sit. And you can't apply any changes to my site unless you are logged in.

Our policy is best summarized as "we don't care about _you_, we care about _them_", no emails, so no forgetting your password. You have no rights. It's like you don't even exist. If you publish material, I reserve the right to remove it, or use it myself.

Don't impersonate. Don't name someone involuntarily. You can lose everything if you cross the line, and no, I won't cancel your automatic payments first, so you'll have to do it the hard way. See how serious this sounds? That's how serious you're meant to take these.

×
Register


Required. 150 characters or fewer. Letters, digits and @/./+/-/_ only.
  • Your password can’t be too similar to your other personal information.
  • Your password must contain at least 8 characters.
  • Your password can’t be a commonly used password.
  • Your password can’t be entirely numeric.

Enter the same password as before, for verification.
Login

Grow A Dic
Define A Word
Make Space
Set Task
Mark Post
Apply Votestyle
Create Votes
(From: saved spaces)
Exclude Votes
Apply Dic
Exclude Dic

Click here to flash read.

arXiv:2405.00328v2 Announce Type: replace
Abstract: Discrete time crystals are a special phase of matter in which time translational symmetry is broken through a periodic driving pulse. Here, we first propose and characterize an effective mechanism to generate a stable discrete time crystal phase in a disorder-free many-body system with indefinite persistent oscillations even in finite-size systems. Then we explore the sensing capability of this system to measure the spin exchange coupling. The results show strong quantum-enhanced sensitivity throughout the time crystal phase. As the spin exchange coupling varies, the system goes through a sharp phase transition and enters a non-time crystal phase in which the performance of the probe considerably decreases. We characterize this phase transition as a second-order type and determine its critical properties through a comprehensive finite-size scaling analysis. The performance of our probe is independent of the initial states and may even benefit from imperfections in the driving pulse.

Click here to read this post out
ID: 843343; Unique Viewers: 0
Unique Voters: 0
Total Votes: 0
Votes:
Latest Change: May 8, 2024, 7:32 a.m. Changes:
Dictionaries:
Words:
Spaces:
Views: 7
CC:
No creative common's license
Comments: