×
Well done. You've clicked the tower. This would actually achieve something if you had logged in first. Use the key for that. The name takes you home. This is where all the applicables sit. And you can't apply any changes to my site unless you are logged in.

Our policy is best summarized as "we don't care about _you_, we care about _them_", no emails, so no forgetting your password. You have no rights. It's like you don't even exist. If you publish material, I reserve the right to remove it, or use it myself.

Don't impersonate. Don't name someone involuntarily. You can lose everything if you cross the line, and no, I won't cancel your automatic payments first, so you'll have to do it the hard way. See how serious this sounds? That's how serious you're meant to take these.

×
Register


Required. 150 characters or fewer. Letters, digits and @/./+/-/_ only.
  • Your password can’t be too similar to your other personal information.
  • Your password must contain at least 8 characters.
  • Your password can’t be a commonly used password.
  • Your password can’t be entirely numeric.

Enter the same password as before, for verification.
Login

Grow A Dic
Define A Word
Make Space
Set Task
Mark Post
Apply Votestyle
Create Votes
(From: saved spaces)
Exclude Votes
Apply Dic
Exclude Dic

Click here to flash read.

arXiv:2211.09408v2 Announce Type: replace-cross
Abstract: In this article, we explore the dynamical decoherence of the chromophores within a green fluorescent protein when coupled to a finite-temperature dielectric environment. Such systems are of significant interest due to their anomalously long coherence lifetimes compared to other biomolecules. We work within the spin-boson model and employ the Hierarchical Equations of Motion formalism which allows for the accounting of the full non-perturbative and non-Markovian characteristics of the system dynamics. We analyse the level coherence of independent green fluorescent protein chromophores and the energy transfer dynamics in homo-dimer green fluorescent proteins, focusing on the effect of dielectric relaxation on the timescales of these systems. Using the Fluctuation-Dissipation theorem, we generate spectral densities from local electric susceptibility generated from Poisson's equation and employ a Debye dielectric model for the solvent environment. For different system architectures, we identify a number of very striking features in the dynamics of the chromophore induced by the dielectric relaxation of the environment, resulting in strong memory effects that extend the coherence lifetime of the system. Remarkably, the complex architecture of the green fluorescent protein, which includes a cavity-like structure around the atomic system, is well suited to preserving the coherences in the homo-dimer system. The system dynamics generate a dynamical correlation between the coherent energy transfer between its sub-systems and the entropy production, which can lead to transient reductions in entropy, a unique feature of the non-Markovian nature of the system-environment interaction.

Click here to read this post out
ID: 843345; Unique Viewers: 0
Unique Voters: 0
Total Votes: 0
Votes:
Latest Change: May 8, 2024, 7:32 a.m. Changes:
Dictionaries:
Words:
Spaces:
Views: 6
CC:
No creative common's license
Comments: