×
Well done. You've clicked the tower. This would actually achieve something if you had logged in first. Use the key for that. The name takes you home. This is where all the applicables sit. And you can't apply any changes to my site unless you are logged in.

Our policy is best summarized as "we don't care about _you_, we care about _them_", no emails, so no forgetting your password. You have no rights. It's like you don't even exist. If you publish material, I reserve the right to remove it, or use it myself.

Don't impersonate. Don't name someone involuntarily. You can lose everything if you cross the line, and no, I won't cancel your automatic payments first, so you'll have to do it the hard way. See how serious this sounds? That's how serious you're meant to take these.

×
Register


Required. 150 characters or fewer. Letters, digits and @/./+/-/_ only.
  • Your password can’t be too similar to your other personal information.
  • Your password must contain at least 8 characters.
  • Your password can’t be a commonly used password.
  • Your password can’t be entirely numeric.

Enter the same password as before, for verification.
Login

Grow A Dic
Define A Word
Make Space
Set Task
Mark Post
Apply Votestyle
Create Votes
(From: saved spaces)
Exclude Votes
Apply Dic
Exclude Dic

Click here to flash read.

arXiv:2212.07300v2 Announce Type: replace-cross
Abstract: The generation and application of squeezed light have long been central goals of quantum optics, enabling sensing below the standard quantum limit, optical quantum computing platforms, and more. Intensity noise squeezing of bright (coherent) states, in contrast to squeezed vacuum, is relatively underdeveloped. Bright squeezing has been generated directly through nonlinear optical processes or ``quietly pumped'' semiconductor lasers. However, these methods suffer from weak squeezing limits, narrow operating wavelength ranges, and have not been explored at large bandwidths. Here, we show how semiconductor lasers with sharp intensity-dependent dissipation can support highly broadband intensity noise squeezing from infrared (IR) to terahertz (THz) wavelengths, the latter of which has remained unexplored in quantum noise studies. Our protocol realizes strongly ($>10$ dB) intensity noise-squeezed intracavity quantum states, which could create a new regime for cavity quantum electrodynamics experiments, as well as strong output squeezing surpassing gigahertz bandwidths. Furthermore, we show how the same systems also create self-pulsing and bistable mean field behavior, enabling control of light in both the temporal and noise domains. The existence of these multiple functionalities in both the classical and quantum mechanical domains in a single semiconductor laser platform, from IR to THz wavelengths, could enable advances in on-chip quantum optical communication, computing, and sensing across the electromagnetic spectrum.

Click here to read this post out
ID: 843346; Unique Viewers: 0
Unique Voters: 0
Total Votes: 0
Votes:
Latest Change: May 8, 2024, 7:32 a.m. Changes:
Dictionaries:
Words:
Spaces:
Views: 7
CC:
No creative common's license
Comments: