×
Well done. You've clicked the tower. This would actually achieve something if you had logged in first. Use the key for that. The name takes you home. This is where all the applicables sit. And you can't apply any changes to my site unless you are logged in.

Our policy is best summarized as "we don't care about _you_, we care about _them_", no emails, so no forgetting your password. You have no rights. It's like you don't even exist. If you publish material, I reserve the right to remove it, or use it myself.

Don't impersonate. Don't name someone involuntarily. You can lose everything if you cross the line, and no, I won't cancel your automatic payments first, so you'll have to do it the hard way. See how serious this sounds? That's how serious you're meant to take these.

×
Register


Required. 150 characters or fewer. Letters, digits and @/./+/-/_ only.
  • Your password can’t be too similar to your other personal information.
  • Your password must contain at least 8 characters.
  • Your password can’t be a commonly used password.
  • Your password can’t be entirely numeric.

Enter the same password as before, for verification.
Login

Grow A Dic
Define A Word
Make Space
Set Task
Mark Post
Apply Votestyle
Create Votes
(From: saved spaces)
Exclude Votes
Apply Dic
Exclude Dic

Click here to flash read.

arXiv:2302.11582v2 Announce Type: replace-cross
Abstract: Cavity quantum electrodynamics (QED) studies the interaction between light and matter at the single quantum level and has played a central role in quantum science and technology. Combining the idea of cavity QED with moir\'e materials, we theoretically show that strong quantum light-matter interaction provides a way to control frustrated magnetism. Specifically, we develop a theory of moir\'e materials confined in a cavity consisting of thin polar van der Waals crystals. We show that nontrivial quantum geometry of moir\'e flat bands leads to electromagnetic vacuum dressing of electrons, which produces appreciable changes in single-electron energies and manifests itself as long-range electron hoppings. We apply our general formulation to a twisted transition metal dichalcogenide heterobilayer encapsulated by ultrathin hexagonal boron nitride layers and predict its phase diagram at different twist angles and light-matter coupling strengths. Our results indicate that the cavity confinement enables one to control magnetic frustration of moir\'e materials and might allow for realizing various exotic phases such as a quantum spin liquid.

Click here to read this post out
ID: 843347; Unique Viewers: 0
Unique Voters: 0
Total Votes: 0
Votes:
Latest Change: May 8, 2024, 7:32 a.m. Changes:
Dictionaries:
Words:
Spaces:
Views: 6
CC:
No creative common's license
Comments: